
Implementing an agent with
reinforcement learning elements for
Scripts of Tribute card game

(Implementacja agenta z elementami uczenia przez wzmacnianie
do gry karcianej Scripts of Tribute)

Rafał Stochel

Praca inżynierska

Promotor: dr Jakub Kowalski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

2 września 2024

Abstract

The main idea for writing the thesis was to test machine learning methods in
the card game environment. The “Scripts of Tribute” project was used for this
purpose. It is an implementation of the “Tales of Tribute” minigame from “The
Elder Scrolls Online” that allows you to write your own agents. Using artificial
intelligence solutions, the computer program should obtain the best possible results
during the game.

Created agent was submitted to the Tales of Tribute AI Competition (TO-
TAIC), held as part of the IEEE Conference on Games 2024 (IEEE CoG). It man-
aged to take second place. Following text describes rules of the game, TOTAIC
competition, designed program and its results.

Głównym zamysłem na napisanie pracy było przetestowanie metod uczenia ma-
szynowego w środowisku gier karcianych. Użyto do tego celu projektu „Scripts of
Tribute”. Jest to implementacja minigry „Tales of Tribute” z produkcji „The Elder
Scrolls Online” umożliwiająca pisanie własnych agentów. Przy użyciu rozwiązań z
obszaru sztucznej inteligencji program komputerowy ma uzyskać jak najlepsze re-
zultaty podczas rozgrywki.

Stworzony agent został wysłany na zawody Tales of Tribute AI Competition
(TOTAIC), odbywające się w ramach konferencji IEEE Conference on Games 2024
(IEEE CoG), plasując się na drugim miejscu. Poniższy tekst opisuje zasady gry,
konkurs TOTAIC, stworzony program oraz uzyskane przez niego wyniki.

Contents

1 Introduction 7

2 Scripts of Tribute 9

2.1 Game rules . 9

2.2 SoT GUI examples . 12

2.3 How to create an agent . 13

3 Agent implementation 15

3.1 Beam Search algorithm . 15

3.2 Heuristic . 16

3.3 Q–learning . 18

3.3.1 State, action and reward . 18

3.3.2 Q–learning formula . 19

3.3.3 Q–values examples . 19

4 Agent testing 21

4.1 Q–learning general tests . 21

4.2 Rate of learning . 22

4.3 Beam Search performance . 22

5 Tales of Tribute AI Competition 25

6 Conclusions 27

Bibliography 29

5

6 CONTENTS

A Q–values 31

B Heuristic weights 35

Chapter 1

Introduction

In recent years we have seen an increase in the achievements of artificial intelligence
in playing games of all kinds, starting with the important event of constructing a
Deep Blue [1] computer system by IBM. It was a machine that could play Chess at a
master level. In 1996, a match was held between the reigning world champion Garry
Kasparov and Deep Blue, which ended with a score of 4–2 for the human player.
One year later, in 1997 there was a rematch, but this time computer player was the
winner. In those days, it was a groundbreaking event that showed possibilities of
artificial intelligence. Another significant program was AlphaGo [2] by DeepMind –
board game Go agent. During Future of Go Summit event in 2017 it defeated Ke Jie,
a number one ranked player in the world. Go is considered even more complicated
for computers than Chess, due to the larger number of possible games states and a
more abstract evaluation of the board.

The next complex problem approached by DeepMind was StarCraft II. This
is a real–time strategy game with a theoretically infinite set of options to make.
Resource management, buildings placement, selecting the appropriate strategy to
deal with the enemy, micro management of units, all of these aspects had to be
done by the machine. AlphaStar [3] was presented in 2019 and it was able to meet
these requirements. What is more, it managed to beat top tier professional human
players.

Card games seem like a great area to verify the capabilities of artificial intelli-
gence. A computer program faces problems such as reasonable deckbuilding, search-
ing through multiple game states, evaluation of current situation and predicting the
opponent’s possible moves. To test these ideas the Script of Tribute [4] project and
related tournament – Tales of Tribute AI Competition [5] were created. They allow
you to create your own bots and then compete with other programs. This paper
describes an agent designed to check how reinforcement learning methods can help
establish a good evaluation function, providing a better result in clashing with other
programs.

7

Chapter 2

Scripts of Tribute

Scripts of Tribute (SoT) is an implementation of card minigame Tales of Tribute
from The Elder Scrolls Online MMORPG. Project was done using C# programming
language and .NET platform. Gameplay focuses on a duel between two players. The
first person to score a certain number of in-game points wins.

2.1 Game rules

Game cards are splitted into eight decks, which are named after their Patrons. Before
the game starts, players have to choose which decks will be available during the play
(figure 2.3). Treasury deck can’t be selected and is always available in the game.
These decks will create a Tavern. This is a set of possible cards to buy during the
play. Then the turn–based duel starts.

In general turn looks like this: five cards are added to the hand of player from
the Draw Pile. If Draw Pile is empty, then Cooldown Pile cards are shuffled and
moved into Draw Pile. Player can play Action and Agent cards from the hand.
Alive Agents can be activated. Then player decides whether to spend resources
on purchasing new cards (sometimes it is not worth to get anything) or on calling
patrons (four selected before the game + Treasury). Tavern can only have 5 possible
options at a time. Bought cards are replaced with new ones. Lastly, Power points
can be used to attack enemy Agents. Figure 2.1 describes all the main objects in
the game. Another example of gameplay is shown in figure 2.4.

9

10 CHAPTER 2. SCRIPTS OF TRIBUTE

Figure 2.1: Scripts of Tribute GUI screenshot with described elements

There are three resources in the game:

• Coins – basic currency. With Coins we can call some Patrons and buy cards
from the Tavern, which will extend our current deck. All gained Coins are
cleared at the end of turn.

• Power – with Power we can call some Patrons or attack enemy Agents, possibly
remove them from the board and move them to the Cooldown Pile. Remaining
Power is converted to Prestige at the end of turn.

• Prestige – winning condition resource. Winner is determined based on these
points. Usually obtained from Power. Sometimes can be gained directly from
played cards or Patrons.

Each competitor starts with 10 cards in the deck, which are called Starters. They
are mainly used to gain Coins. Cards are divided into four groups:

• Action – its effects are generated after it is played. Goes to the Played Pile
after purchase. When turn is over, the Played Pile is moved to the Cooldown
Pile.

• Agent – card that can be placed on the board. Each round, if Agent is alive,
player can activate it, to perform its actions. Goes to the Cooldown Pile after
purchase and after losing health points.

• Contract action – is played instantly after buying. Goes to the Discard Pile
after playing. Cards remain on the Discard Pile to the end of the game.

• Contract agent – is placed immediately on the board after buying. Goes to
the Discard Pile after losing health points.

2.1. GAME RULES 11

Patrons are a significant tactic of the game. Every Patron except the Treasury,
which is always neutral, can be in one of three states: favors player, neutral, favors
enemy. By calling them, player can trigger various effects depending on the current
state of the Patron. Activating it also changes the Patron’s state to one that is
more favorable to the player (usually by one step). Brief description of the available
Patrons:

Patron Activation cost Effect

Ansei 2 Power
Gain 1 Coin and gain 1 Coin at

the start of your turn if favored by Ansei

Duke of Crows All Coins
Gain Coins - 1 Prestige,

can be activated only if not favored

Hlaalu
Sacrifice

1 card in play
Gain Cost of sacrificed card - 1 Prestige

Orgnum 3 Coins
Gain Power based on number

of owned cards

Pelin 2 Power
Move 1 Agent from your Cooldown Pile

to Draw Pile

Rajhin 3 Coin
Add empty card to
the opponent’s deck

Red Eagle 2 Power Draw 1 card

Treasury
Sacrifice

1 card in play

Add Writ of Coin card (+2 Coins effect)
to your Cooldown Pile,

this Patron is always neutral

Another important aspect of the game is Combos. When multiple cards from one
deck are played during one turn, they can produce additional effects. Tracking your
own and enemy’s possible combinations is crucial to winning the duel.
Player can win the game in one of three possible ways:

• Get favor of all four deck Patrons.

• Gain 40 or more points of Prestige. The game will now enter “sudden death”
mode. If any player has less Prestige points than his opponent at the end of
his turn, he loses the game.

• Gain 80 or more points of Prestige. After that, the game immediately ends.

More detailed description of rules can be found on the Tales of Tribute fan-made
sites1.

1https://eso-hub.com/en/guides/tales-of-tribute-guide

https://eso-hub.com/en/guides/tales-of-tribute-guide

12 CHAPTER 2. SCRIPTS OF TRIBUTE

2.2 SoT GUI examples

SoT project provides an application with graphical interface. It is incredibly helpful
during fixing and improving the agent (figure 2.5). Program can be also used to
practice your own Tales of Tribute skills. When selecting the opponent, we can also
specify the game seed and the time the agent has to complete a turn (shown in figure
2.2).

Figure 2.2: After choosing an option to start, we have to pick our enemy

Figure 2.3: Selecting patrons

2.3. HOW TO CREATE AN AGENT 13

Figure 2.4: Example gameplay

Figure 2.5: Logs are a great way to debug written bot

2.3 How to create an agent

To write a bot user has to create a new class that inherits from the provided “AI”
class. The game engine initializes the instances of two bots that are going to clash.
Then, at certain moments, it calls functions on both instances. An agent has to
implement the following three methods:

• PatronId SelectPatron(<PatronId> availablePatrons,
int round)

Each new game begins with a call to this method. The agent has to select which
Patron will be available during the game from the list of available Patrons.

14 CHAPTER 2. SCRIPTS OF TRIBUTE

Round describes when the method was called (four choices in total).

• Move Play(GameState gameState, List<Move> possibleMoves,
TimeSpan remainingTime)

An essential part of any agent. From the list of possible moves the bot should
return one to play. The GameState object describes the current state of the
board. The time spent on move selection should not exceed the value of the
remainingTime variable. The game is lost if illegal move is returned.

• void GameEnd(EndGameState state,
FullGameState? finalBoardState)

Auxiliary function used to debug bot’s behavior based on EndGameState and
FullGameState objects. Gets called after the game is over.

When the program is done, we can test it in two ways: in the GUI described earlier or
using GameRunner command line interface, shown in the figure 2.6. Basic command
to run one game:
GameRunner.exe BotA BotB.

There are also additional flags to modify testing:

• --n X – run X games

• --s X – run game with specified seed

• --t X – run games on X threads

Figure 2.6: GameRunner output

Chapter 3

Agent implementation

The agent was written in C# (just like the original project), although the latest
framework update allows the use of other programming languages. Created bot
consists of three main parts to select the best move: searching through game states
with Beam Search algorithm, usage of Q–learning method to determine the value of
card, evaluating given state with a heuristic function. Patrons are selected randomly.
The idea behind agent’s implementation was to check whether a machine learning
can be helpful in rating cards.

3.1 Beam Search algorithm

When agent is given multiple moves options in Play() method it must somehow
decide, which one is the best. The game engine provides function ApplyMove(Move
move, ulong seed), to simulate the execution of a move. It has to be called by the
instance of GameState or SeededGameState type. It returns a new game state and
a list of new possible moves. Seed as an optional argument is used to shuffle new
cards for the Tavern and the Draw Pile.
With this method we can check what effects each move will have. However, cards
in the Draw Pile are placed randomly. Because of this, it is difficult to predict the
opponent’s moves, as we do not know exactly what hand he will have in his turn.
Designed agent only searches through its own turn’s options.

Some cards, when activated, create a choice for the player. For example replace
n Tavern cards or move n cards from the Cooldown Pile to the top of the Draw Pile.
Such actions can lead to a remarkable growth of the number of states. To overcome
this problem, Beam Search1 algorithm has been chosen as the search method. We
want to keep only k nodes with the highest evaluation score. Without it, we might
have exceeded the time limit for playing the move. The final node limit was selected
by testing, more in the tests section.

1https://en.wikipedia.org/wiki/Beam_search

15

https://en.wikipedia.org/wiki/Beam_search

16 CHAPTER 3. AGENT IMPLEMENTATION

Additionally, to reduce the number of states to check, we can play “no choice
cards” (a similar approach is described in [6]). These are simple moves that do not
create any decisions to make and can be played instantly at the start of the turn.
Of all 101 cards available in the game, 43 were marked as “no choice cards”.
The agent plays moves in a specific order depending on their type:

• At first no choice cards.

• Then, the remaining Action and Agent cards that can create choice.

• Finally, remaining moves are evaluated, like buying new cards,
attacking Agents, calling Patrons.

Beam Search procedure adapted for the SoT can be summarized using the
following pseudocode:

1. Declare empty lists: beamNodes, endNodes.

2. Create nodes from given data (game state and list of possible moves) and add
them to beamNodes.

3. While beamNodes is not empty:

(a) Declare empty list: childrenNodes.

(b) Iterate over beamNodes: expand the given node (by ApplyMove() func-
tion) and visit its children. If child is a final node (can’t be expanded
– has no child nodes) add it to the endNodes with calculated heuristic
evaluation, otherwise add it to the childrenNodes.

(c) Keep k (a predefined limit) nodes in childrenNodes with the best heuristic
results. The remaining nodes are discarded from the list.

(d) beamNodes = childrenNodes

(e) Simplify nodes – iterate over beamNodes: play “no choice cards” on node’s
game state.

4. Iterate over endNodes, return move from the element with the highest heuristic
score.

3.2 Heuristic

A crucial part of the agent. After reaching the end node in the search procedure, we
need to know whether the current situation is favorable for us. To do this, various
aspects of the board are considered. All parameters are multiplied by appropriate
weights, to focus on the more significant elements of the game, e.g. Prestige is
way more important than Coins during late game. The program calculates values

3.2. HEURISTIC 17

separately for the player and the opponent. Then, the final score for a given state
is calculated as:

stateScore = playerScore− enemyScore

During the search procedure, every final state (where the only possible move is to
end the turn) is assigned a heuristic value. The agent chooses final state with the
highest heuristic score and plays move, from which this state originates.

1. Stage of the game
The first thing the agent does is determine the current phase of the game. In the
early turns, we want to focus on deck building. As the game progresses, Prestige
becomes more valuable, as it is a condition for winning. For each stage a set
of weights was prepared, based on my own gaming experience and tweaking the
values during testing the agent.

Formula to calculate current stage:
Stage turnCount + enemyPrestige intervals
Start [0, 10)

Early [10, 20)

Middle [20, 20)

Late [30, 30+)

2. Cards and Board
Things considered when calculating the score:

• Coins, Power, Prestige

• Number of cards from each deck. The higher the number, the greater the
chance of making a card combination.

• All cards in the deck and Agents that are active on board. To rate them,
the value from Q–learning algorithm is used. More details in the Q–learning
section. The Agent’s score also depends on its health points.
Extra points for up to 3 cards from the top of the Draw Pile (3 is the
maximum number of cards that can be moved there from the Cooldown
Pile).
There is a small penalty for having starter-type cards in the late game. These
cards yield only 1 Coin per play, which is not very useful at this point.

• Cards available in the Tavern, that can be purchased by the agent.

3. Patrons
Overall, the activation of Patrons is rewarded in itself, but some of them can have
additional effects depending on the phase of the game:

• Ansei – Coins earning Patron, only rewarded in the Start and Early phases.

18 CHAPTER 3. AGENT IMPLEMENTATION

• Duke of Crow – exchanges money for Prestige and can only be activated
when it is neutral or favors the opponent. For this reason it should be
played at the end of the game, to maximize its effect. For the Start and
Early it is assigned huge negative values.

• Orgnum – gives Prestige for the number of cards the player owns, preferred
during the Late game.

In addition, the player receives a penalty that increases with the number of
activated opponent’s Patrons.

3.3 Q–learning

When choosing parameter weights for the evaluation function, we rely on our own
intuition. However, this can be tricky with cards, as they have long term effects on
the game. To deal with this, we can delegate the calculation of the values to the
computer. Evolutionary algorithms are often used for this purpose [7], [8]. Another
idea is to use machine learning.

Card games are characterized by a high degree of randomness. In Scripts of
Tribute, we only know what decks are available at the beginning of the game. The
Draw Pile and the Tavern cards are prepared randomly each time. Therefore it
it would be difficult to prepare a data set for training the agent. That’s why Q–
learning2 was chosen, because it is a model-free algorithm. Due to the mentioned
randomness, the probability of moving from one state to another is not taken into
account. The agent collects data during the game and learns from it.

3.3.1 State, action and reward

The general idea of this algorithm is to track the performance of the agent in every
possible state of the game. First, we need to define what exactly is the state of
the game for our bot. Cards have clearly described effects. Their final outcome
depends on the currently possible combinations with other cards. Since we want to
measure the strength of cards, the state was defined as the number of cards in a
given deck. Possible state values are {0, 1, ..., 19}. If the number of cards is higher,
it is reduced to 19 (this only happens if our deck is flooded with Curse cards). Then,
the action is to play a specific card. The reward function is used, to check how good
this move was. In general, all effects caused by the card in a single turn are scored.
More precisely, the following things are counted in the ScoreForCompletedEffect()
reward function: Coins, Power and Prestige gained; cost of a card acquired from
the Tavern; opponent’s lost Prestige; cost of a destroyed card; points for drawing a
card; points for opponent’s discarding a card; cost of a card moved to the top of the

2https://en.wikipedia.org/wiki/Q-learning

https://en.wikipedia.org/wiki/Q-learning

3.3. Q–LEARNING 19

Draw Pile; added Patron calls; created bonus card (a specific card from the Orgnum
deck). Combining 20 possible state values and 113 game cards, we get a table with
2260 cells, that were initially filled with the number 5. This value resulted in fast
learning time and good results. The agent updates the Q–table based on the cards
played each turn.

3.3.2 Q–learning formula

Main formula to calculate new Q–values:

Qnew(S,A) = (1− α) ·Q(S,A) + α · [R(S,A) + γ ·max
a′

Q(S ′, a′)]

Where variables are:

• S – state S of the game. The number of cards owned from a specific deck. A
card from this deck will be played.

• A – action A that will be executed. Activated Agent or Action played during
the turn.

• R(S,A) – reward function to check how well the action A performed in the
state S. Calculated as the sum of ScoreForCompletedEffect() function calls
for each card’s effect.

• α – learning rate. Value from the interval [0, 1]. Determines how fast the
agent should learn, i.e. how much the old value is overwritten by the new one.
Agent with α = 0 does not learn at all, it relies on the knowledge it already
has. When α = 1, old values are discarded after each update.

• γ – discount factor. Value from the interval [0, 1]. If γ = 0, potential future
rewards are not considered, only current situation is important. An agent with
γ = 1 focuses on long-term strategy.

• maxa′ Q(S′, a′) – maximum reward that can be obtained from the new state
S′ after action A, iterating over every possible action in S′: a′.
Normally, we get a new state after performing an action. However, in the
current state–action design a new game state is reached by getting a card
from the Tavern. Possible actions are represented as cards available in the
Tavern, that come from the same deck as the played card. S′ is is then defined
as S + 1 (because the Tavern card was acquired).

3.3.3 Q–values examples

Example card and its values calculated by the Q–learning algorithm. All numbers
in the table are truncated to two decimal places. Based on observations, sometimes

20 CHAPTER 3. AGENT IMPLEMENTATION

there are duels where the agent has even 30 cards at the end of the game. In such
extreme situations it is difficult to achieve card combinations. The created agent
does not take into account the total number of cards in the Q–learning algorithm,
so the effects of the cards may begin to decrease in the late game. Limiting the
purchase of new cards is an idea for future optimization. Sample card and its Q–
value:
Midnight Raid, Action card, Red Eagle deck, Cost=4, effects:

• Activation: gain 3 points of Power.

• Combo 2: gain 2 points of Power.

State Q–value

0 11.76

1 12.32

2 11.27

3 14.97

4 18.37

[5, 19] 5

Apparently, more than 4 cards from the Red Eagle deck were not reached when
Midnight Raid was in play, so 5+ states were not visited. The default integer value
of 5 is still present in Q–table cells. An incorrect number can be seen in the state=2.
In this situation, the value should be greater than the previous state value and less
than the next one. For more cards, see appendix A.

Chapter 4

Agent testing

4.1 Q–learning general tests

The most important test is what results the algorithm gets. The simplest way to
check this is through duels with other agents. Four bots clashed and each match
consisted of 1000 games:

• HQL BOT – created agent.

• HQL BOT SoT card tier – the card values from the Q–table were replaced
with card tiers from the SoT project. Each card was assigned a tier.
Original SoT card tiers:
S = 50, A = 25, B = 10, C = 5, D = 1
They have been scaled down to more closely match the other weights of the
HQL BOT’s heuristics (more in appendix B):
S = 10, A = 6, B = 3, C = 2, D = 1

• HQL BOT card value=1 – each card is assigned a value of 1.

• DecisionTreeBot – bot from Scripts of Tribute, added for reference.

vs HQL BOT
HQL BOT
SoT card tier

HQL BOT
card value=1

DecisionTree
Bot

HQL BOT - 73.3% 92.9% 78.6%

HQL BOT
SoT card tier

26.7% - 79.3% 73.6%

HQL BOT
card value=1

7.1% 20.7% - 22.4%

DecisionTree
Bot

21.4% 26.4% 77.6% -

21

22 CHAPTER 4. AGENT TESTING

4.2 Rate of learning

This section shows the win rate and the learning process over the number of games
played. The agent started dueling with the Q–table cells filled with the default
value of 5. The learning rate and discount factor were set to α = 0.1, γ = 0.8.
DecisionTreeBot was chosen as the opponent. Results were measured after every
500 games and are shown in figure 4.1.
On the other hand, if we use 0 as the default value, the agent learns much slower.
Now, the results were measured after every 1000 games – figure 4.2.

4.3 Beam Search performance

The agent again competes with DecisionTreeBot. In each test, the node limit of the
Beam Search was changed (figure 4.3). Every match consisted of 500 games. As
expected, as the number of maintained nodes increases, so does the computation
time. However, the percentage of games won remains almost the same. We can
assume that the initially best node will retain the best result after simulating the
remaining possible moves.

Figure 4.1: Initial Q–value = 5

4.3. BEAM SEARCH PERFORMANCE 23

Figure 4.2: Initial Q–value = 0

Figure 4.3: Node limits comparision

Chapter 5

Tales of Tribute AI Competition

Five teams took part in the 2024 edition of the competition by submitting one agent
each. The tournament was played in a round-robin format. Duels between two bots
consisted of about 600 games. HQL BOT (Heuristic Q–learning Bot) presented in
this thesis, came in second place. BestMCTS3 and BestMCTS5, which won the last
year, are described in [6]. Both are variations on the general idea of Monte-Carlo
Tree Search1. The next edition of the competition is planned for 2025.

In the version of the HQLBOT that was sent to the contest, the Q–table was
initially filled with the number 5. It has been trained by playing most of the time
against DecisionTreeBot. The number of training games was approximately 20,000.
Although based on the previous section, we can see that after about 3500 games,
the score doesn’t change that much.

Figure 5.1: Winrate of each agent

1https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

25

https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

26 CHAPTER 5. TALES OF TRIBUTE AI COMPETITION

Figure 5.2: Result of each duel

Chapter 6

Conclusions

This paper presents the implementation of an agent for the card game Scripts of Trib-
ute. The motivation was to test reinforcement learning methods. At the beginning,
the rules of the game and how to create new agents are explained. It then describes
how the created agent searches through multiple game states with the Beam Search
method and evaluates them using a heuristic function. Later it focuses on the idea
of the Q–learning algorithm, how it was adapted to the requirements of the game
and how it improved the evaluation function. The last part contains the agent’s
tests and results, along with the summary of the Tales of Tribute AI Competition,
where the described agent achieved second place.

Q–learning has proved to be helpful. Although the agent achieved decent re-
sults, many things can be done better, e.g. improving the weights of the heuristic
function or improving the calculation of Q–values. The next thing worth trying is to
use a different machine learning method, such as deep reinforcement learning with
the ability to make major decisions during the game.

27

Bibliography

[1] M. Campbell, A. J. Hoane, and F. Hsu, “Deep Blue”, Artificial intelligence, vol.
134, no. 1, pp. 57–83, 2002.

[2] D. Silver et al., “Mastering the game of Go with deep neural networks and tree
search”, Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[3] M. Mathieu, S. Ozair, S. Srinivasan et al. ”AlphaStar Unplugged: Large–Scale
Offline Reinforcement Learning”, arXiv:2308.03526.

[4] D. Budzki, D. Kowalik, and K. Polak, ”Implementing Tales of Tribute as a
Programming Game”, Engineer’s thesis, University of Wrocław, 2023.

[5] J. Kowalski, R. Miernik, K. Polak, D. Budzki and D. Kowalik, ”Introducing
Tales of Tribute AI Competition”, IEEE Conference on Games, pp. 1–8 (2024)

[6] A. Ciężkowski and A. Krzyżyński, “Developing Card Playing Agent for Tales of
Tribute AI Competition”, Engineer’s Thesis, University of Wrocław, 2023.

[7] J. Kowalski and R. Miernik, “Evolutionary Approach to Collectible Card Game
Arena Deckbuilding using Active Genes”, IEEE Congress on Evolutionary Com-
putation (CEC), 2020, pp. 1–8.

[8] S. J. Bjørke and K. A. Fludal, ”Deckbuilding in Magic: The Gathering Using a
Genetic Algorithm”, Master’s thesis, NTNU, 2017.

29

Appendix A

Q–values

Murder of Crows, Action card, Duke of Crows deck, Cost=4, effects:

• Activation: gain 1 Coin.

• Combo 2: gain 2 Coins and 2 points of Power.

• Combo 3: gain 2 points of Power.

State Q–value

0 5.87

1 7.66

2 7.60

3 6.97

4 11.15

5 10.47

6 7.43

7 6.88

8 5.55

[9, 19] 5

31

32 APPENDIX A. Q–VALUES

As the number of all cards increases (we can assume this because the agent keeps
buying cards), it becomes difficult to achieve better effects with card combinations.
That is why the values decrease from state=5.
Ansei Assault, Action card, Ansei deck, Cost=9, effects:

• Activation: gain 5 points of Power OR get a card from the Tavern that costs
up to 9 Coins.

State Q–value

0 5

1 5.95

[2, 19] 5

The agent was only able to check one state for a card that was as expensive as
the Ansei Assault card.
Storm Shark Wavecaller, Agent card, Orgnum deck, Cost=5, effects:

• Activation: gain 2 points of Power.

• Combo 2: remove up to 1 card from the Tavern.

33

State Q–value

0 4.9

1 5.16

2 5.06

3 5.06

4 5.60

5 4.88

6 6.75

7 4.16

8 5

9 4.20

10 4.20

[11, 19] 5

Orgnum deck offers the opportunity to obtain bonus cards. For this card, even
State=10 has been visited.
House Embassy, Action card, Hlaalu deck, Cost=8, effects:

• Activation: gain 7 Coins.

• Combo 2: get a card from the Tavern that costs up to 7 Coins.

State Q–value

0 5

1 15.97

2 13.03

3 15.67

4 15.08

5 15.74

6 12.28

7 6.88

[8, 19] 5

Another expensive card, but this time it was more preferred by the agent.

Appendix B

Heuristic weights

Table B.1: HQL BOT heuristic weights

Parameter
Stage

Start Early Middle Late

Prestige 15 16 20 20

Power 14 15 19 19

Coins 2 1 1 1

Patron 18 18 18 18

Card (having more cards is beneficial) 5 5 4 4

Tavern card 1 1 1 1

Draw Pile card 1 1 1 1

Curse -3 -3 -3 -3

Combo 4 4 4 4

Active agent 12 12 12 12

Agent’s health points 4 4 4 4

“Gold” card 0 -2 -4 -6

Ansei 3 2 1 1

Duke of Crows -1000 -1000 0 20

Orgnum 1 1 3 5

35

	Introduction
	Scripts of Tribute
	Game rules
	SoT GUI examples
	How to create an agent

	Agent implementation
	Beam Search algorithm
	Heuristic
	Q–learning
	State, action and reward
	Q–learning formula
	Q–values examples

	Agent testing
	Q–learning general tests
	Rate of learning
	Beam Search performance

	Tales of Tribute AI Competition
	Conclusions
	Bibliography
	Q–values
	Heuristic weights

