Designing a Template-Based Map Generator
for Heroes of Might & Magic 111

(Stworzenie generatora map do Heroes of Might & Magic 111
opartego o szablony)

Dawid Skowronek Grzegorz Kodrzycki

Praca inzynierska
Promotorzy: dr Jakub Kowalski

mgr inz. Radostaw Miernik

Uniwersytet Wroctawski
Wydzial Matematyki i Informatyki
Instytut Informatyki

2 lutego 2025

Abstract

This work presents a template-based map generator for Heroes of Might & Magic
IIT (HOMM3) and is inspired by the challenges explored in prior research [I]. The
generator creates maps compatible with the commonly used open-source recreation
of the HOMM3 engine - VCMI [2]. In this work, we introduce our method of creating

maps and explain how to use our generator.

Our approach uses templates to allow creating maps even by inexperienced
players. We provided detailed descriptions of the algorithms and heuristics used to
place objects, resources, towns, guards and other elements. Additionally, we discuss

the implementation of our generator and provide an example map.

The generator’s maps are compatible with VCMI, which allows for extensive
testing, ensuring that maps meet desired criteria for balance and playability. We
also highlight potential improvements and future work, such as incorporating un-
derground levels and water travel, to further enhance the map generation process.

This work aims to contribute to the HOMMS3 community by providing a robust
tool for creating high-quality maps, enhancing the overall experience.

Streszczenie

W niniejszej pracy przedstawimy bazujacy na szablonach generator map dla He-
roes of Might & Magic 11T (HOMMS3), zainspirowany wyzwaniami przedstawionymi
w pracy [I]. Generator tworzy mapy kompatybilne z popularna, otwartozrédtowa
rekreacja silnika HOMMS3 — VCMI [2]. W tej pracy prezentujemy nasza metode

tworzenia map oraz wyjasniamy, jak korzysta¢ z naszego generatora.

Nasze podejscie korzysta z szablonéw, aby umozliwié¢ tworzenie map nawet nie-
do$wiadczonym graczom. Szczegbélowo opisujemy algorytmy i heurystyki uzyte do
rozmieszczenia obiektéw, zasobéw, miast, straznikéw oraz pozostalych elementéw.

Ponadto omawiamy implementacje oraz przedstawiamy przyktad wygenerowanej
mapy.

Wygenerowane mapy sa kompatybilne z VCMI, co pozwala na dokladne testy,
zapewniajac, ze spelniaja one kryteria sprawiedliwosci oraz grywalnosci. Wskazu-
jemy réwniez mozliwe kierunki rozwoju naszej pracy, takie jak dodanie mozliwoéci

tworzenia podziemi oraz akwenéw wodnych.

Celem tej pracy jest wsparcie spotecznosci HOMMS3, dajac uzytkownikom do
dyspozycji narzedzie do tworzenia dopracowanych map.

Contents

|2 Heroes of Might and Magic 3|

13 Template Description|

3.1 General map information|

3.4 Example template] oo

4 Map (eneration|

4.1 Zone generation|

4.2 Town placement|

11
12
13
13
15
15
16
17
17
18

19

21
21
23
24

25

27

4.3 Border and connection of zones generation|

[4.3.1 Determining zone borders|

[4.3.2 Finding connection points|

[4.3.3 Setting wide connections|.

4.4 Object placement|.

[4.4.1 Mines placement|

[4.4.2 'Treasures placement|

4.5 Road placement|.

4.6 Guard placement|

4.7 Noise placement|

[Fairness of the Map|

[5.1 Improvements in map generation|
I}i'z (2!11§:I i!lszi!:i lsz ls:{i! tililllg:{ﬁ!l -------------

IBibliography|

CONTENTS

45

Chapter 1

Introduction

Heroes of Might & Magic III [3], released in 1999, remains one of the most iconic
turn-based strategy games. Central to its enduring appeal is the ability to create
and explore diverse maps. However, manually designing engaging maps can be time-

consuming and challenging, particularly when maintaining fairness and consistency.

One of the key factors in its continued popularity is the community-driven
project VCMI [2], which tries to recreate the original HOMMS3 engine. As it provides
the ability to extend the base game, it is a commonly used alternative by many
players. Therefore, we decided to generate maps that can be played on this engine.

Another key factor in the game’s enduring popularity is the large number of
maps created by fans and published online for other players to download and review
[4]. These maps introduce new challenges and strategic elements, making gameplay
more diverse and engaging, allowing users to try something else besides the base
maps available in the original client. However, this creates a new issue: hand-
crafted maps are time consuming and often difficult to balance. To address this,
many players and game designers use algorithms to generate maps. This speeds up
the process, but often results in less engaging designs. We decided to tackle this

problem and will present our approach to this process.

8 CHAPTER 1. INTRODUCTION

There are several ways to approach this problem. For example, in the random
map generator used in Songs of Conquest (SoC) [5], a game often regarded as a suc-
cessor of the HOMM series, the templates are divided into two separate parts: layout
and blueprint. The layout is responsible for describing the region layout, connections,
and overall appearance of the map. The blueprint focuses on object placement, their
quantity, and modifiers, such as whether they are guarded. However, in our work,
we decided that combining these functionalities into a single template suits us best.

We also observed a lack of comprehensive research on this topic and available
studies often provide limited explanations of the creation process. In our work,
we thoroughly detail the structure of the templates, enabling anyone to use our
generator. Additionally, we outlined the map creation process step by step, making

it easier for future users to understand and build upon.

Chapter 2

Heroes of Might and Magic 3

In HOMMS, players take turns exploring the map, collecting resources, capturing
mines, managing towns, and commanding armies led by heroes. Usually, the ob-
jective is to defeat all opponents. Other possible objectives are to achieve specific
victory conditions, such as capturing key towns or gathering unique artifacts. Fig-
ure shows how the game looks in the HOMM3 GUI. All interface elements are
described below and referenced using numbers (e.g., D).

This GUI consists of two main sections: playable elements and menu/navigation.
Here is a brief overview of each, but we will explore them in detail later.

Playable elements are interactive components on the map where players make
strategic decisions and directly influence the game world. Towns (1) are central
structures where players recruit units, build buildings, and manage their growth.
Another important element is heroes (2) — characters controlled by the player that
explore the map, collect resources, and engage in battles. Buildings that produce re-
sources, commonly referred to as mines, are the backbone of every player’s economy.
These structures generate a consistent supply of a specific resource at the beginning
of each day. For example, the sawmill) produces wood.

But mines are not the only way to boost the economy. A good example are
piles of resources @), (such as wood and ore in the picture), which the player’s hero
can collect once. In addition to towns and mines, we also have special buildings
® that grant unique effects depending on the type of structure. Each hero can
equip artifacts) to gain buffs or special abilities. These can be found in a specific
location or collected during exploration. Other important collectibles are treasure
chests (7) that offer a choice between gold and experience, but sometimes can also
grant artifacts or resources. Lastly, map designers place roads (8 to guide players
and give them movement speed.

We also have GUI elements that provide important information and shortcuts
to streamline gameplay. For example, the resource bar (9) which displays the current
stockpile of resources, the heroes list @, and the towns list @

10 CHAPTER 2. HEROES OF MIGHT AND MAGIC 3

When we choose hero, we can see additional information in the hero panel ,
where we can see stats and army count info. In addition to this game information,
we also have some buttons to perform essential actions, such as entering a town,

ending the turn, or switching between the surface and the underground map layers.

Figure 2.1: HOMMS3 GUI.

2.1. TOOLS 11

2.1 Tools

The foundation of our work was based on homm3tools [6] and homm31lua [7]. These
tools enabled precise object placement and map modification with a tile-level accu-
racy. The generated maps were validated using the VCMI engine.

homm3tools is a comprehensive project that provides a suite of tools and li-
braries for HOMM3. It is designed to facilitate in-game modifications, making it an

essential resource for custom map creation.

homm31lua serves as a Lua API for homm3tools. Its integration with Lua script-
ing empowers users to create custom scripts to modify gameplay elements, signifi-
cantly enhancing the overall experience of working with homm3tools.

VCMI is an open-source community project aimed at recreating and extend-
ing the original HOMM3 engine. Beyond enabling users to play the game, it offers
utilities like vemieditor, which allows for easy inspection of map designs, and vemi-
launcher, which supports running bots on custom maps. These tools make VCMI a
powerful resource for creating and testing generated maps.

12 CHAPTER 2. HEROES OF MIGHT AND MAGIC 3

2.2 Key concepts

Figure 2.2: Example of a fully generated map.

2.2. KEY CONCEPTS 13

2.2.1 Zones

A map in HOMMS3 can be conceptualized as a collection of zones. Zones are distinct
areas on the map, each with terrain type, resources, and guards. They define the

layout of the map, influencing movement and exploration.

Zones can serve different purposes: some may contain more resources and mines
to boost the player’s economy, while others may be designed as combat zones where
players can gain more experience. Typically, starting zones should strike a balance

between resource richness and difficulty.

Figure 2.3: Example of zones without any key components.

2.2.2 Terrains

Terrain serves multiple purposes, from aesthetic differentiation of zones and enhanc-
ing the map’s visual appeal to impacting hero movement and granting extra stats
to creatures during combat. It can be divided into two types: basic and magical.

Basic type include: grass, sand, snow, swamp, rough, subterranean, lava, water,
dirt and rock, while magical types include magic plains, cursed ground, clover fields,

rockland, ground and several others.

Basic ones only impact movement speed, with the exception of water, which
requires a special artifact, spell, or ship to travel. For example, traveling through
rough terrain increases movement cost by 125%, while on grass it remains unaffected.

14 CHAPTER 2. HEROES OF MIGHT AND MAGIC 3

Each faction has its native terrain, which provides extra attack, defense, and
speed for creatures fighting on their native terrain.

Magical terrain, on the other hand, can overlay the basic one. If a battle occurs
on these lands, they have a significant impact on the game. For example, the magic
plains cause all spells to be cast at expert level, while the holy ground gives all
good-aligned creatures +1 morale, and all evil-aligned ones -1 morale [I3].

Although the tools we use allow for the placement of magical terrains, we did

not include this option in our template for this work.

Figure 2.4: Example basic terrains. From top-left: swamp, lava, sand, snow, rough,

grass, subterranean and water.

2.2. KEY CONCEPTS 15

2.2.3 Factions

A faction is a distinct group with its own unique town, units, abilities, and playstyle.
Each of them offers a different experience and requires specific strategies. Factions
are central to the game’s diversity as they require players to adapt their strategies
accordingly. In our generator, we support all factions from the basic version of the
game: (Good Factions) Castle, Rampart, Tower, (Evil factions) Inferno, Necropolis,
Dungeon, (Neutral factions) Stronghold, Fortress.

2.2.4 Towns

Towns are the cornerstone of the player strategy. They are the main places where
players recruit troops, build structures, and generate income. Typically, each player
starts with at least one town. Every faction has unique towns, each with its own
specialties, needs, troops, and upgrades. Some towns may require more gold, while
others are more resource-based. Controlling towns is crucial for maintaining a steady

flow of resources and troops, making them strategic points on the map.

Figure 2.5: All possible towns from basic version of the game.

16 CHAPTER 2. HEROES OF MIGHT AND MAGIC 3

2.2.5 Mines

Mines are resource-generating structures that provide specific types of resources. We
allow for placing the following mines:

e Sulfur dune for sulfur,

o Alchemists lab for mercury,
e Ore pit for ore,

e Crystal cavern for crystal,
e Gem pond for gems,

e Gold mine for gold and

o Sawmill for wood.

Controlling mines ensures a steady supply of materials needed for developing towns

and recruiting troops. They are particularly valuable in early- and mid-game stages.

Figure 2.6: All possible mines. From top-left: Sulfur dune, Alchemists lab, Ore pit,
Crystal cavern, Gem pond, Gold mine and Sawmill.

2.2. KEY CONCEPTS 17

2.2.6 Special buildings

Special buildings are unique structures found across the map that offer various ben-
efits, such as buffs to your heroes or troops. These buildings may significantly
enhance player’s capabilities and provide a competitive edge. They may also grant
the ability to buy artifacts or gain knowledge, which may be crucial, especially in

mid- and late-game.

Figure 2.7: Example special buildings.

2.2.7 Guards

Guards are neutral creatures stationed at specific locations on the map to protect
valuable resources, mines, or access to other zones. Defeating guards is a key part of
map progression, as it allows players to claim resources and expand their influence.
The strength and type of guards vary based on the map design and difficulty level.

However, the level of guards alone is not sufficient to determine their difficulty.
For example, ranged or high-mobility units are more likely to cause losses, as they can
attack from a distance or quickly close the gap with the player’s units. In contrast,
slow melee creatures often can be kited (outmaneuvered using fast/cheap units while
damaging it with ranged ones) or killed before they even get close, allowing players
to avoid taking any damage while defeating them.

On top of that, there are also unit-specific abilities, which can also impact the
battle result. For example, the Vampire Lord’s lifesteal ability allows it to regain
health by dealing damage, which can prolong fights and possibly increase losses.
Similarly, the Crusader’s ability to strike twice significantly increases its damage
output. Therefore, the composition and abilities of the guards play a crucial role in
assessing the challenges they present.

18 CHAPTER 2. HEROES OF MIGHT AND MAGIC 3

Figure 2.8: Example creatures from (top to bottom rows) Castle, Rampart, Tower

and Inferno.

2.2.8 Obstacles

Obstacles are terrain features or structures that restrict movement and access to
certain areas. They can be neutral, like mountains, rivers, or trees, or controlled,
like gates. Obstacles are a key part of enforcing exploration and determining paths.

Figure 2.9: Example obstacles.

2.2. KEY CONCEPTS 19

2.2.9 Collectibles

Collectibles include items like treasure chests, resources, and artifacts scattered
across the map. These items provide immediate benefits, such as one-time resources
or experience gains or granting powerful items like artifacts. Collecting these items

can significantly boost a player’s progress, especially in the short term.

Figure 2.10: Example collectibles. The top row contains resources and a treasure

chest, while the other rows include example artifacts.

When designing a balanced and engaging map, it is crucial to carefully consider
the difficulty of each zone, its richness (a parameter indicating the number of col-
lectibles within a zone), and how these elements encourage players to explore the
map more thoroughly. Striking the right balance ensures fairness while maintaining
the strategic depth and enjoyment of gameplay.

Chapter 3

Template Description

In this chapter, we will describe the structure and components of the templates
used in our generator. These templates are written in JSON format, allowing for
easy readability and modification. We will break down the template into parts and

explain each section. At the end, we will present a fully functional example.

3.1 (General map information

{
"name": "2P Duel Template",
"description": "Map for 2 players with a contested central area.",
"SiZe": IISII’
"difficulty": "Easy"
3

Listing 1: General information about the map.

The name and description fields provide information that is visible to players
when they search for the map in the main menu. These fields should be straightfor-

ward and easy for the player to understand.

The difficulty field is purely cosmetic; we do not use this parameter when
generating a map. It appears in the main menu to inform players about the map

author’s perceived difficulty level.

The size parameter significantly impacts the map, as it determines the number
of tiles. Possible sizes are S/M/L/XL, with S being 36 x 36 tiles up to XL being 144 x 144
tiles.

Figure [3.1] shows how this information will be displayed in the map menu.

21

22

CHAPTER 3. TEMPLATE DESCRIPTION

Scenario Name:

2P Duel Template

4 Show Available Scenarios Show Chat
4 Random Map Turn Options

Scenario Description:
A balanced map for 2 players with a contested central area.

Victory Condition:

-} Defeat All Enemies

s Condition:

-
Yy~ Lose All Your Towns and Heroes

Enemies: ‘

Figure 3.1: Map menu selection.

3.2. ZONE INFORMATION 23

3.2 Zone information

We have created abstractions to enable the individual definition of parameters for
each zone. In this section, we will go through each field and explain its purpose in

the process of creating the map.

{
"id": 1,
"size": "M",
"terrain": "Grass",
"richness" : "Low",
"difficulty": "Beginner",
"number0fTowns": 1,
"towns" : [
{
"faction" : "Stronghold",
"owner" : "Player_1"
3
1,
"maxNumberOfMines": 3,
"number0fMineTypes": 1,
"mines": [
{
"type": "Gold Mine",
"owner": "Player_1",
"minCount": 2
}
]
}
Listing 2: General information about zone.
The id of the zone is an abstraction used mainly to identify which zones are
connected.

The size of the zone determines how large it will be. Larger zones may contain
more treasures and mines, but players may need more time to explore them. Possible
values are S/M/L/XL; they will inform the generator how big a terrain portion this
zone should have. This attribute is not correlated with size of the map.

The terrain of the zone can be chosen by the creator, even if some factions do
not benefit from specific terrains. Additionally, there is the possibility of selecting
a random terrain type. We believe that this flexibility allows for more interesting
map designs. Possible values are Grass, Sand, Snow, Swamp, Rough, Subterranean,
Lava, Dirt, Rock, and Random.

The richness field is responsible for manipulating the amount of treasures

24 CHAPTER 3. TEMPLATE DESCRIPTION

and buildings in the zone. Finding the right parameter is crucial to creating a fair

economy for every player. Possible values are Low/Medium/High.

The difficulty field indicates how challenging a zone should be by type and
quantity of guards in the zone. Guards are placed at connections and near crucial ob-
jects. Possible values are Beginner, Easy, Normal, Hard, Expert, and Impossible.

The array of towns describes the towns within the zone, including their faction
and ownership. As mentioned above, the faction influences gameplay significantly
for players. We also provide an option to make it neutral, by setting the ownership
of a town to "None". Unlike some map generators, our version does not support

random town generation.

The array of mines specifies the types of mines in the zone. Users can also
define ownership and specify the minimum number of each mine type they want to
see. Additionally, the maxNumberOfMines field sets the maximum number of mines

in the zone.

3.3 Connection information

{
"zoneA": 1,
"zoneB": 6,
"type": "monolith",
"tier": 2

}

Listing 3: General information about a connection.

In this section, we store information about the connection between zones. The
zoneA and zoneB fields hold the IDs of the zones we want to connect.

The type of connection specifies how the zones are linked, with three options
currently available: narrow, wide, and monolith (portal). We will describe them

in detail later.

The tier of the connection indicates the level of the road used, affecting the
movement speed of players. Higher-tier roads allow heroes to move faster. Possible
values for road tiers are 0/1/2/3. A tier of 0 indicates no road, meaning movement
costs are unchanged. For higher tiers, the movement cost is progressively reduced:
tier 1 to 75%, tier 2 to 65%, and tier 3 to 50%. Additionally, roads at each tier
have distinct visual appearances, making it easy to differentiate their quality and

associated movement efficiency.

3.4. EXAMPLE TEMPLATE

3.4 Example template

{ {
"name": "2P Duel Template", "faction": "Inferno",
"description": "Balanced map for 2 "owner": "Player_2"
< players.", }
"size": "S", 1,
"difficulty": "Easy", "maxNumberOfMines": 4,
"zones": ["number0fMineTypes": 2,
{ "mines": [
"id": 1, {
"size": "M", "type": "Ore Pit",
"terrain": "Grass", "owner": "Player_2"
"richness": "Low", },
"difficulty": "Easy", {
"numberOfTowns": 1, "type": "Sawmill",
"towns": ["owner": "Player_2"
{ }
"faction": "Stronghold",]
"owner": "Player_1" },
} {
1, "id": 3,
"maxNumberQfMines": 4, "size": "S",
"number0fMineTypes": 2, "terrain": "Sand",
"mines": ["richness": "High",
{ "difficulty": "Normal"
"type": "Ore Pit", }
"owner": "Player_ 1" 1,
T, "connections": [
{ {
"type": "Sawmill", "zoneA": 1,
"owner": "Player_1" "zoneB": 3,
} "type": "narrow",
] "tier": 2
}, },
{ {
"idq": 2, "zoneA": 2,
"size": "M", "zoneB": 3,
"terrain": "Random", "tier": 2
"richness": "Low", }
"difficulty": "Easy",]
"numberO0fTowns": 1, }

"towns": [

25

Chapter 4

Map Generation

Map generation is quite a complex task to tackle. Dividing it into smaller parts
allows for code modularization, making the work a bit easier. Fach step uses the

same random seed to ensure consistency.

4.1 Zone generation

In this step, we aim to generate zones with terrains while preserving connections
defined in the template as much as possible. Our main heuristic here is to maximize
the distances between the zones if there is a connection between them.

First, we need to find N such N? > #Zones. Then, we create an N x N grid.
Starting from the first zone, we place it on a random edge of the grid. Then, we

place zones in each cell while maximizing our heuristic.

Figure 4.1: Zones placed within the grid.

27

28 CHAPTER 4. MAP GENERATION

After initializing the grid, we divide our map and randomly assign each zone’s
center within cells. The next step is to use the Fruchterman-Reingold algorithm [§]
to find better centers for the zones. This algorithm assumes that we try to fit NV
circular zones with a radius on a map. The idea of this algorithm is that connected

zones attract while intersecting zones push back.

Figure 4.2: Fruchterman-Reingold visualization. The thicker arrow between the
green and red zone represents a stronger force separating them.

The final step is to assign the corresponding terrain type to each tile. In the first
version, we assigned terrain from the closest zone. Another approach is to generate
Penrose Tiling [9] and assign vertices from this tiling to the nearest zone (therefore,
the desired terrain type), then assign each pixel to the closest vertex.

Figure 4.3: Comparison between map with and without Penrose Tiling.

Other generators have solved this problem using different methods. For exam-
ple, in [10], the main idea is to use Voronoi diagrams to create zones. Then, they
introduce irregularity using fractal randomization on zone edges.

4.2. TOWN PLACEMENT 29

4.2 Town placement

In this section, we focus on placing towns. The position for each of them is set to
the center of mass of its respective zone. We believe that, after applying previous
algorithms, placing towns in such locations brings fairness to the map. It is crucial
to place towns early in the process, as subsequent steps heavily depend on towns’

positions.

Figure 4.4: Map after towns placement.

4.3 Border and connection of zones generation
Generating borders and finding connections is done in a few steps:

1. Determining zone borders
2. Finding connection points

3. Setting wide connections

30 CHAPTER 4. MAP GENERATION

We allow for three types of connections:

e Narrow - zones are almost completely cut off, with only one guarded path.
e Monolith - zones are connected via monoliths (portals)

e Wide - there are almost no obstacles on the borders and border is not guarded

in any way

Figure 4.5: Comparison between Narrow, Wide and Monolith connections.

4.3.1 Determining zone borders

In this step, we iterate over the tiles and mark a tile as border tile if it is adjacent to a
tile from another zone, considering all eight neighboring tiles in an octile connectivity

pattern.

4.3. BORDER AND CONNECTION OF ZONES GENERATION 31

4.3.2 Finding connection points

After creating borders, we choose connection points for each zone we want to connect:

e Town with a monolith entrance

e Two points next to the zones’ edges, which determine the starting points of
roads for each zone (two points that belong to different zones and are not
border tiles)

e Town with the starting point of a road between zones described above

If there is no town in the zone and we are trying to make one of the first two
connection types, then we use the zone center instead.

We find those points using Dijkstra’s algorithm. We run it from the town (or
the zone center), returning the last point from the starting zone that is not a border
and the first point from the other zone that is also not a border. Importantly, we
do not place roads right away, we first place other objects on the map to avoid
restricting tiles.

If zones are not directly connected after generation and a narrow connection is
not possible, we consider the zones to be connected via monoliths and proceed with
the algorithm.

When placing monoliths, we select a random valid tile in the given zone. A tile
is considered wvalid if it is not a border, road, or gate, and there is at least one free
tile between the chosen one and the other objects.

4.3.3 Setting wide connections

In the first two steps, we set first two types of connections. If the connection type
should be wide we need to remove found border tiles.

32 CHAPTER 4. MAP GENERATION

s

Figure 4.6: Map after borders placement.

4.4 Object placement

We classify mines, collectibles, and special buildings as objects. In this part, we
begin with the placement of mines, followed by collectibles and special buildings.

4.4.1 Mines placement
Essential mines
First, we check if the template includes basic mines (Ore Pit, Sawmill). If so, we

want to place one of each type near the town, within a distance that guarantees
getting those mines in three turns.

Placing the minimum count of specified mines
Next, we place the mines specified in the template until there is at least the minimum

count of each type in the zone. The positions of these mines are randomly distributed
throughout the zone.

4.4. OBJECT PLACEMENT 33

Placing random mines to hit maxNumberO0fMines

To reach maxNumberOfMines, we randomly select mines from the template and try

to place them as far as possible from already placed ones.

In our implementation, possible mines for zones are heavily dependent on the
author creating template. While allowing advanced users to manually place specific
mines in zones is a viable option, we aim to make the generator more user-friendly.
To achieve this, we could add a field to manipulate the wealth of the zone. Using
information from this field, we could place faction-based mines in the zones.

Figure 4.7: Map after mines placement.

4.4.2 'Treasures placement

Resources near mines

We aim to place resources near the entrances of mines with a certain probability to
boost the player’s economy. These resources are positioned strictly near the entrance
to ensure that guards also secure them.

34 CHAPTER 4. MAP GENERATION

Treasure block

We place blocks of treasure, with their size randomly selected, containing various
items such as resources or artifacts. These items are categorized into different tiers.
Positions of such blocks are randomly picked from all possible placements.

Treasure buildings

Lastly, we place buildings that provide players with temporary boosts. The number
of these is distinct from treasure blocks, as we think that they serve a different

purpose. Their positions are also randomly selected from all possible locations.

An area for potential improvement is the better placement of those objects. In
[10], Gus Smedstad suggests the idea of density, which we have partially implemented
in the final step of placing mines.

Figure 4.8: Map after treasures placement.

4.5. ROAD PLACEMENT 35

4.5 Road placement

We start the process by fixing the border lines. We look for tiles that are adjacent
to at least three border tiles in the NSWE directions. This is a purely cosmetic
addition and does not significantly impact the gameplay. Then, we run Dijkstra’s
algorithm again, ensuring that we will step on free tiles. We may choose ones just
next to objects, but this is not obligatory.

Once we generate the entire path, we unmark necessary tiles if they were marked
as borders. Additionally, if the path is not from a town, we find a tile surrounded by
obstacles on any axis and designate it as guardian tile, where we will place a guard
later in the guard placement phase.

-

Figure 4.9: Map after roads placement.

36 CHAPTER 4. MAP GENERATION

4.6 Guard placement

In previous steps, we marked tiles that should have a guard on them. We consider

two distinct types of guard:

o Gate guards

o Treasures/mines guards

Each type has a different difficulty scale, determining creatures’ level, quantity,

disposition, and whether they can flee or grow in numbers.

4.6.1 Guard attributes

e Level: indicates creature strength. Each creature has a basic and upgraded
form. If upgraded, we would add 0.5 to its level.

e Quantity: number of creatures the player will face in battle. Higher difficulty

levels result in higher quantities.
e Disposition: refers to the behavior of guards. Types include:

— COMPLIANT - always joins the army
— FRIENDLY - likely to join the army

AGGRESSIVE - may join the army

HOSTILE - unlikely to join the army

SAVAGE - never join the army

e Can flee: determines if guards can flee from battlefield. It can be set to true

or false.

e Can grow: determines if guards will grow in number over time. It can be set

to true or false.

4.6. GUARD PLACEMENT 37

Parameters such as level, quantity, disposition, can flee, and can grow are chosen
based on the zone difficulty level and guard type. The guard level and quantity are
randomly selected from a range corresponding to the zone level, while the other
parameters are predetermined. For example, if the zone difficulty is set to Hard,
then treasure guards’ levels can vary from 3 to 5, while gate guards with the same
difficulty will range from 5.5 to 6.5. The quantity for both will be randomly selected
from a range of 60-120; disposition will be set to HOSTILE, can flee to false, and

can grow to true.

For each tile, we determine the appropriate guard type and randomly assign
the level and other parameters depending on this difficulty.

-

Figure 4.10: Map after guards placement.

38 CHAPTER 4. MAP GENERATION

4.7 Noise placement

We generate Perlin Noise [I1] on an N x N grid. We are generating noise in the
[—1,1] range, so to get the binary output, we are taking only values > 0. The
next step is to apply this noise to free tiles. Then, we mark tiles that must remain

reachable (e.g., roads, the bottom line of buildings).

The next step is running Dijkstra’s algorithm to calculate a minimal number of

obstacles from each town to be in a specific tile using the following rules:
o if the tile is free: maintain the number from the previous tile,
o if the tile is occupied: treat it as an obstacle,

o if the tile was free and now is occupied: add weights after moving to it

(1 for orthogonal movement, 2 for diagonal movement).

Figure 4.11: Visualization of algorithm for ensuring all areas are reachable [10].

After calculating these distances, we check all places that are supposed to remain
reachable. If their distance # 0, we need to fix their reachability.

4.7. NOISE PLACEMENT 39

Figure 4.12: Final map after all steps.

Chapter 5

Fairness of the Map

Creating a fair yet asymmetrical map is quite challenging. During our design process,
we developed heuristics with the goal of ensuring fairness in our maps.

5.1 Improvements in map generation

In [I0], the concept of density is suggested as a heuristic to place objects. This
approach involves storing additional information, density, for each object type, which
specifies how many such buildings should exist within a zone. The first object of
each type is randomly placed near our town (or the center of the zone). Other

objects are placed as far as possible from each other.

Upon further consideration, we refined this heuristic to also keep core objects
for players’ economy at roughly equal distances from each player’s town. While this
introduces a bit of symmetry, it brings more fairness to the map.

5.2 Other ideas to test fairness

Previous improvements relied heavily on heuristics and our subjective perception
of fairness. Fortunately, VCMI provides tools to play the specified maps with the
prepared Als. Using this opportunity, we created a simple script to run VCMI
agents whose only task is to play games on our generated map. Then, we collect
logs of games and create statistics for each player. To reduce the impact of game
imbalance (some factions are stronger than others), we run games on maps with the
same factions.

41

42 CHAPTER 5. FAIRNESS OF THE MAP

Enter number of games (default=3): 10
Enter number of batches (default=3): 10

Player Win Statistics:
Player O (red): 57 wins 57.00% Win ratio
Player 1 (blue): 43 wins 43.00% Win ratio

Listing 4: Statistics from an example map.

Unfortunately, this approach has one disadvantage: when player_0 loses, the
game ends. This means that for maps with more players, we are unable to gather
all the necessary statistics. One solution we considered was to repeatedly swap all
possible players with player_0 to ensure that every player has the opportunity to
be active until the end.

In the current version, we have implemented a script to test the map’s fairness
after generation. In future work, such information could be improved by using it

during the generation process.

Chapter 6

Conclusions and Future Work

The main goal of this work was to develop a generator for fair maps based on a
template for HOMMS3 and to summarize the currently available tools to achieve this
effect. We have thoroughly described the entire map creation process and presented
the capabilities of our generator. All code related to this work is shared on GitHub
[12]. Detailed instructions regarding the construction and usage can be found in the

Readme.md.

We successfully created the generator, but we believe the topic is much more

complex and that several other issues could be addressed.

HOMMS3 allows for the creation of underground levels, which we omitted in
our generator. Although this is a complex problem, we think it could significantly

enhance the gameplay.

Additionally, the possibility of building ships and traveling by water allows for
the creation of new zones and the introduction of a new type of connection. However,
like the underground levels, this is a separate topic altogether.

We touched on maintaining map fairness, but there is room for a deeper analysis
here as well. For example, we could more precisely analyze the locations where we

place mines and other objects.

43

Bibliography

[1] J. Kowalski, R. Miernik, P. Pytlik, M. Pawlikowski, K. Piecuch and J. Sekowski,
“Strategic Features and Terrain Generation for Balanced Heroes of Might and

Magic III Maps,” 2018 IEEE Conference on Computational Intelligence and
Games (CIG)

[2] VCMI homepage
http://vcmi.eu

[3] Heroes of Might and Magic IIT homepage
https://www.ubisoft.com/en-gb/game/heroes-of-might-and-magic-3-hd

[4] Website with HOMMS3 maps
https://www.mapsdheroes.com/heroes3/maps.php

[5] Songs of Conquest "Random Map Generator Modding"
https://www.songsofconquest.com/modding/rmg

[6] homm3tools repository
https://github.com/potmdehex/homm3tools

[7] homm3lua repository
https://github.com/radekmie/homm3lua

[8] Fruchterman, Thomas MJ, and Edward M. Reingold. “Graph drawing by force-
directed placement.” Software: Practice and experience 21.11 (1991): 1129-1164.

[9] D’Andrea, F. 2023. A guide to Penrose Tilings.

[10] Gus Smedstad "The Heroes 3 Random Map Generator"
https://www.dropbox.com/scl/fi/p6oadqz10budi24ieytba/
heroes-3-random-map-generator-gus-smedstad.ppt?rlkey=
vortlqcht4a0s205a91lvokvr7

[11] Perlin, K. An image synthesizer. ACM Siggraph Comput. Graph. 1985, 19,
287-296

[12] Project’s GitHub repo
https://github.com/SkoOowi/HOMM3-mapgen

45

http://vcmi.eu
https://www.ubisoft.com/en-gb/game/heroes-of-might-and-magic-3-hd
https://www.maps4heroes.com/heroes3/maps.php
https://www.songsofconquest.com/modding/rmg
https://github.com/potmdehex/homm3tools
https://github.com/radekmie/homm3lua
https://www.dropbox.com/scl/fi/p6oadqz10bu4i24ieytba/heroes-3-random-map-generator-gus-smedstad.ppt?rlkey=v6rt1qcht4a0s205a9lvokvr7
https://www.dropbox.com/scl/fi/p6oadqz10bu4i24ieytba/heroes-3-random-map-generator-gus-smedstad.ppt?rlkey=v6rt1qcht4a0s205a9lvokvr7
https://www.dropbox.com/scl/fi/p6oadqz10bu4i24ieytba/heroes-3-random-map-generator-gus-smedstad.ppt?rlkey=v6rt1qcht4a0s205a9lvokvr7
https://github.com/Sko0owi/HOMM3-mapgen

46 BIBLIOGRAPHY

[13] HOMMS3 terrain wiki
https://heroes.thelazy.net/index.php/Terrain

https://heroes.thelazy.net/index.php/Terrain

	Introduction
	Heroes of Might and Magic 3
	Tools
	Key concepts
	Zones
	Terrains
	Factions
	Towns
	Mines
	Special buildings
	Guards
	Obstacles
	Collectibles

	Template Description
	General map information
	Zone information
	Connection information
	Example template

	Map Generation
	Zone generation
	Town placement
	Border and connection of zones generation
	Determining zone borders
	Finding connection points
	Setting wide connections

	Object placement
	Mines placement
	Treasures placement

	Road placement
	Guard placement
	Guard attributes

	Noise placement

	Fairness of the Map
	Improvements in map generation
	Other ideas to test fairness

	Conclusions and Future Work
	Bibliography

