
Artificial Intelligence for Strategy Card Games:
Search and Content Generation

(Sztuczna inteligencja w strategicznych grach karcianych:
przeszukiwanie i generowanie treści)

Radosław Miernik

Praca magisterska

Promotor: dr Jakub Kowalski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

19 marca 2021 r.

Abstract

In this thesis, we presented a study regarding two important aspects of evolving
feature-based game evaluation functions: the choice of genome representation and
the choice of opponent used to test the model.

We compared three representations. One simpler and more limited, based on a
vector of weights that are used in a linear combination of predefined game features.
And two more complex, based on binary and n-ary trees.

On top of this experiment, we also investigated the influence of fitness defined as
a simulation-based function that plays against the best individual from the previous
generation and against a fixed opponent – either weak or strong.

For a testbed, we have chosen a recently popular domain of digital collectible
card games. We encoded our experiments in a programming game, Legends of Code
and Magic, used in Strategy Card Game AI Competition. However, as the problems
stated are of general nature we are convinced that our observations are applicable in
the other domains as well.

Przedmiotem tej pracy jest zbadanie dwóch ważnych aspektów ewolucji funkcji
ewaluacyjnych, bazujących na kluczowych cechach stanu gry: wyboru reprezentacji
genomu oraz wyboru przeciwnika do sprawdzenia samego modelu.

Porównaliśmy trzy reprezentacje. Jedną, prostą i ograniczoną, opartą na
wektorze wag, które reprezentują kombinację liniową cech. Oraz dwie, bardziej
złożone, oparte na drzewach binarnych i n-arnych.

Dodatkowo, sprawdziliśmy także wpływ funkcji oceniającej osobnika bazującej
na symulacji, która gra przeciwko najlepszemu osobnikowi z poprzedniej generacji i
takiej, która gra przeciwko ustalonemu przeciwnikowi – słabemu lub silnemu.

Jako środowisko do eksperymentów wybraliśmy popularną ostatnio dziedzinę
cyfrowych kolekcjonerskich gier karcianych. Zakodowaliśmy nasze eksperymenty w
grze programistycznej Legends of Code and Magic, używanej w Strategy Card Game
AI Competition. Jednakże, przedstawione w tej pracy problemy mają ogólną naturę
i jesteśmy przekonani, że nasze obserwacje mają przełożenie na inne dziedziny.

Contents

1 Introduction 7

2 Background 9

2.1 Evolving evaluation functions . 9

2.2 AI for collectible card games . 10

2.3 Deck archetypes . 11

3 Legends of Code and Magic 13

3.1 Motivation . 13

3.2 Gameplay . 14

3.2.1 Draft phase . 14

3.2.2 Battle phase . 15

3.3 Cards . 16

3.4 Related work . 17

3.5 Version 1.0 . 18

4 Evaluating Card Games 19

4.1 Representation . 19

4.2 Opponent estimation . 20

5 Representation Study: Trees Versus Vectors 21

5.1 Experiment setup . 21

5.2 Learning comparison . 22

5.3 Tournament comparison . 23

5.4 Tuning good solutions . 25

6 Opponent Estimation Study: Progressive Versus Fixed 27

6.1 Experiment setup . 27

6.2 Learning comparison . 28

6.3 Tournament comparison . 28

7 Conclusion 31

Bibliography 33

5

Chapter 1

Introduction

The vast majority of game playing algorithms require some form of game state
evaluation – usually in the form of a heuristic function that estimates the value or
goodness of a position in a game tree. This applies not only to classic min-max
based methods, as used for early Chess champions [1], but also in modern
approaches, based on deep neural networks combined with reinforcement learning
[2]. The idea of estimating the quality of a game state using a linear combination of
human-defined features was proven effective a long time ago [3], and is still
popular, even when applied to modern video games [4, 5].

One of the recently popular game-related AI testbeds are Collectible Card
Games (e.g., The Elder Scrolls: Legends [6], Hearthstone [7]). Because they
combine imperfect information, randomness, long-term planning, and massive
action space, they impose many interesting challenges [8]. Also, the specific form of
game state (combining global board features with features of individual cards)
makes such games particularly suited for various forms of feature-based state
evaluation utilizing human player knowledge.

Because of their complex characteristics, we have chosen the domain of digital
collectible card games as a testbed. We encoded our models in a programming game,
designed for AI research, Legends of Code and Magic. The game is used in various
competitions, e.g., contest on the CodinGame platform and Strategy Card Game AI
Competition, co-organized with IEEE CEC and IEEE COG conferences.

The motivation for our research was to compare two models for evolving game
state evaluation functions: a simpler and more limited, based on a vector of weights
that are used in a linear combination of predefined game features; a more complex
and non-linear, based on a tree representation with feature values in leaves and
mathematical operations in nodes. Our expectation is that the different capabilities
of these models will significantly impact the evolution process and the overall
individual performance.

7

8 CHAPTER 1. INTRODUCTION

During the initial experiments, we observed some interesting behaviors of both
representations regarding “forgetting” previously learned knowledge. As these
observations were related to the chosen goal of evolution, we performed additional
tests comparing three fitness functions: playing against a fixed weak opponent,
playing against a fixed strong opponent, and playing against the best individual
from the previous population.

This thesis is structured as follows. In the next chapter, we present the related
work describing usages of evolutionary algorithms for game state evaluation and
the domain of AI for collectible card games. The following chapter is dedicated to
Legends of Code and Magic – game description, its motivation, related work, and
the state of agents development. In the following chapter, we provide the details of
our model describing the representations and fitness functions. The following two
chapters present our experiments and discuss the results in the above-mentioned
topics: comparing tree versus vector representations and fixed opponent versus
progressive fitness calculation. In the last chapter, we conclude our research and
give perspectives for future work.

Chapter 2

Background

2.1 Evolving evaluation functions

Evolutionary algorithms are used for game playing in two main contexts. One, based
on the Rolling Horizon algorithm (RHEA) [9], utilizes evolution as an open-loop
game tree search algorithm. The other, a more classic approach, employs evolution
offline, to learn parameters of some model, usually a game state evaluation function.
Such function can be further used as a heuristic in alpha-beta pruning, RHEA, some
variants of MCTS [10], and other algorithms. The quality of the evaluation function
directly translates into the agent’s power.

The common approach is to define a list of game state features and evolve a
vector of associated weights, so that they closely approximate the probability of
winning the game from the given state. This type of parameter-learning evolution
has been applied to numerous board games, including Chess [11] and Checkers [12]
as well as digital games, like Hearthstone [13] or TORCS [14].

Although treating parameters as vectors and evolving their values using genetic
algorithms is more straightforward, some research uses tree structures and genetic
programming instead for this purpose. The idea behind it is that the capacity of a
linear (vector) representation may be too limited to encode certain problems.

The majority of genetic programming applications in games are an evolution of
standalone agents instead of evaluation functions only. It was successfully applied in
various board games, e.g., Chess [15, 16] and Reversi [17].

It is also possible to combine genetic programming with other algorithms and
techniques. One example is to combine it with neural networks to evolve Checkers
agents [18]. Another is to evolve the evaluation function alone and combine it with
an existing algorithm, e.g., beam search, minmax or MCTS, instead of evolving
fully-featured agents. Such an evolution was successfully applied in games of varying
complexity, e.g., Checkers [19] and Chess [20].

9

10 CHAPTER 2. BACKGROUND

Another aspect is measuring the quality of an evaluation function. Because it
has to compare the strength of the agents, usually a simulation-based approach is
used, combined with a large number of repetitions to ensure the stability of obtained
results. Thus, such an evolution scheme is very computationally expensive.

2.2 AI for collectible card games

Collectible Card Game (CCG) is a broad genre of both board and digital games.
Although the mechanics differ between games, basic rules are usually similar. First,
two players with their decks draw an initial set of cards into their hands. Then, the
main game starts in a turn-based manner. A single turn consists of a few actions,
like playing a card from the hand or using an onboard card. The game ends as soon
as one of the players wins, most often by getting his opponent’s health to zero.

Recently the domain has become popular as an AI testbed, resulting in a
number of competitions [21, 22, 23], and publications focusing on agent
development, deckbuilding, and game balancing.

Usually, agents are based on the Monte Carlo Tree Search algorithm [10] (as it is
known to perform well in noisy environments with imperfect information), combined
with some form of state evaluation either based on expert knowledge and heuristics
as in [13], or neural networks [24]. An interesting approach combining MCTS with
supervised learning of neural networks to learn the game state representation based
on the word embeddings [25] of the actual card descriptions is described in [26].

The deckbuilding task for the constructed game mode has been tackled in several
works. The most common approach is to use evolution combined with testing against
a small number of predefined human-made opponent decks, often ones designed by
experienced players. It was successfully applied in Magic: The Gathering [27] and
Hearthstone [28, 29]. Alternatively, a neural network-based approach for Hearthstone
has been presented in [30].

Balancing, in the context of collectible card games, usually means slight
modifications of card statistics (e.g., attack, health, cost) to prevent overpowered
decks. MAP-Elites with Sliding Boundaries algorithm has been proposed for this
task [31]. The study in [32] proposes multi-objective evolution, trying to minimize
the magnitude of changes.

Other attempts focus on understanding the game while it is played. One can
try to predict cards that the opponent is likely to play during a game [33], or predict
a probability of winning as in [34].

The biggest problem while developing new tools for CCGs is their scale. While
there are only 160 playable cards in Legends of Code and Magic, real CCGs can have
far more: over 1200 in The Elder Scrolls: Legends and over 3600 in Hearthstone. Of
course, both games are still adding more cards, pushing the problem even further.

2.3. DECK ARCHETYPES 11

2.3 Deck archetypes

There are numerous websites with example decks and according tactics, often
maintained by the community123. While most of the tactics emerge directly from
the mechanics, the card cost – present in all CCGs – is the most influential factor.

Of course, differences in the average card cost imply completely different tactics,
as the number of cards playable within one turn changes as well. Such a distinction
leads to a concept of deck archetypes:

• Aggro, composed of cheap cards, mostly creatures. The main objective is to win
as quick as possible. The tactic is to fill the board with creatures and attack
before the opponent will be able to build up the advantage.
• Control, composed of items (or spells) and expensive but strong creatures. The

goal is to endure as long as possible while constantly cleaning the board by
removing enemy creatures. This tactic may not lead to a standard victory but
rather to exhaust the opponent instead.
• Midrange, composed of average-cost cards, a balanced mix of creatures and

items. It is somewhere in between the previous two – does not rush as much as
Aggro and is not as durable as Control.

A rough approximation of the deck archetype can be made by looking at the
mana curve. The mana curve is a histogram of the costs of all cards in a deck.
Example mana curves, presenting all three archetypes are presented in Fig. 2.1.

Aggro

C
ar

d
co

un
t

Midrange Control

Figure 2.1: Example mana curves of all three deck archetypes. With the card cost
on x-axis and card count on y-axis we plot a curve of the card cost. The mass of
this curve suggest, whether this deck is focusing on early-, mid-, or late-game.

1https://hearthstonetopdecks.com
2https://hsreplay.net/decks
3https://teslegends.pro

https://hearthstonetopdecks.com
https://hsreplay.net/decks
https://teslegends.pro

Chapter 3

Legends of Code and Magic

3.1 Motivation

Legends of Code and Magic (LoCM) [23] is a CCG designed with AI research in mind,
co-authored by the author of this thesis. In comparison to human-playable CCGs,
like The Elder Scrolls: Legends [6] or Hearthstone [7], it is much simpler, and all
player actions are fully deterministic. Such a limitation makes the implementation
of AI agents easier, allowing the researchers to focus on experimenting.

A natural process present in all games, especially multi player ones, is the
formulation of a so-called meta of the game or just metagame. In CCGs context,
most often it is a couple of deck templates with an accompanying tactic, designed
to exploit a certain mechanic in order to achieve high win rates. Less impactful but
also present is a list of objectively good and bad cards, usually along with their
cheaper or better counterparts. While the metagame itself is not inherently bad, it
directly impacts the community and leads to sterilisation of the in-game content.

The majority of real-world CCGs have multiple game modes. However, all of
them boil down to either a constructed deck or arena scheme. In the former, players
construct their decks in between the games, using all of the cards they have collected
so far. In the latter, the deck is constructed once per game or a series of games,
using a predefined subset of cards – often by picking one of three cards N times.

As expected, being able to play with an ad-hoc deck is a strictly harder task.
On one hand, it implies greatly reduced impact of existing meta, as the player does
not know, what cards he will be playing with. On the other, it forces him to be able
to play with all of the available cards – even those outside of meta.

For these two reasons, LoCM relies on a novelty variant of the arena game mode,
called fair arena. In contrast to arena modes in real CCGs, both players compose
their decks once per game, choosing cards from the same options. This eliminates
the problem where one player got strictly better choices during deck composition.
Additionally, the simultaneous choices imply equal knowledge about the draft.

13

14 CHAPTER 3. LEGENDS OF CODE AND MAGIC

3.2 Gameplay

As most CCGs, LoCM is a turn-based, multi-action game. All in-game mechanics
as well as the cards themselves are heavily inspired by The Elder Scrolls: Legends.
Every game consists of two phases – 30 turns of the draft phase, followed by the
battle phase. The game ends as soon as any player’s health reaches zero or less. If
both players’ health reaches zero or less at the same time, the active player wins.

3.2.1 Draft phase

During a draft phase turn, players are presented with a choice of three cards. They
can perform only one action: PICK N , N ∈ {0, 1, 2}. Additionally, there is the PASS
action – an alias for PICK 1 . The game itself does not provide any information
about the already selected cards – if the agent would like to analyze its own choices,
it has to do the bookkeeping by itself.

As the card choices are the same for both players, once the battle phase starts,
one could track the statistics of possibilities of the opponent’s cards. For example, if
cards A and B appeared within one choice and only once, as soon as the opponent
played card A, we can be sure, that he does not own card B.

Figure 3.1: In-game visualization of the draft phase.

The in-game UI of the draft phase, presented in Fig. 3.1, looks as follows. Basic
players’ information, namely avatar, name and their selected card, are on the left
sidebar. Available card choices and the turn indicator are in the center. Finally, next
to the player’s avatar there is the number of cards grouped by type and a so-called
mana curve – a histogram of cards’ costs.

3.2. GAMEPLAY 15

3.2.2 Battle phase

Both players start with 30 health, 1 max. mana, 4 cards in hand, and 5 runes. As in
most CCGs, the second player gets a bonus to minimize the impact of being second.
He draws one additional card at the beginning and has a +1 max. mana bonus until
he spends all of his mana within one turn.

The runes correspond to 25, 20, 15, 10, and 5 health thresholds respectively.
The first time a player’s health drops below a threshold, the rune breaks and results
in one additional card draw during the next turn. This mechanism helps the player
in a difficult situation by giving more cards and hence more possibilities.

Every turn starts with an increase of the maximum mana (up to 12) and a card
draw. The current player draws one card and one more for each rune lost during the
previous turn. If the player already has 8 cards in hand, the draw is cancelled. If
there are no cards to draw, the player looses a rune instead, and his health is reduced
to the rune threshold. With no runes left, player’s health is reduced to zero. After
50 turns both decks are considered empty.

The player can perform multiple actions during their turn. It is worth noting,
that the determinism of actions implies no interactions between players within one
turn. (It is not true in real CCGs, e.g., Prophecy in TES:L.) Possible actions are:

• SUMMON ID LANE summons the creature with instanceId of ID into LANE lane.
• ATTACK ID1 -1 attacks the opponent with creature ID1.
• ATTACK ID1 ID2 attacks creature ID2 with creature ID1.
• USE ID1 -1 uses item ID1 on self.
• USE ID1 ID2 uses item ID1 on creature ID2.
• PASS does nothing.

The ATTACK action happens simultaneously, i.e., both creatures deal and
receive damage at once. When a creature’s health reaches zero or less, it is removed
from the board. Creature keywords may affect the attack resolution (see 3.3).

In order to ease the implementation of agents for new players, all invalid actions
are ignored, as long as they are correctly formatted. Additionally, player may append
a custom message at the end of action – it will be displayed in the UI and has no
other meaning. Actions can be invalid for several reasons:

• There is no card with instanceId of ID.
• LANE is not a valid lane.
• LANE lane is full (at most 3 creatures).
• Player has not enough mana to play a card.
• Creature already attacked.
• Creature is in a different lane.
• Creature with a G keyword is blocking the attack (see 3.3).
• Creature was summoned this turn and has no C keyword (see 3.3).

16 CHAPTER 3. LEGENDS OF CODE AND MAGIC

Figure 3.2: In-game visualization of the battle phase.

The in-game UI of the battle phase, presented in Fig. 3.2, looks as follows.
Complete players’ information, namely avatar, name, health, remaining runes,
current and maximum mana, next turn draft, and deck size, are on the left sidebar.
Summoned creatures are in the center, split into two lanes. Finally, next to the
player’s avatar is the player’s hand.

3.3 Cards

There are two card types – creatures and items. All cards have three primary stats,
three secondary stats, and a number of keywords. Primary stats are attack, mana
cost, and defense. Secondary stats are player’s health gain, damage dealt to the
opponent, and additional draw for the next turn. While the secondary stats are
resolved when the card is played, primary stats’ meaning differs, based on card type.

Figure 3.3: In-game cards visualization. From left: Chameleskulk (creature), Healthy
Veggies (green item), Helm Crusher (red item), and Poison (blue item).

3.4. RELATED WORK 17

Creature cards can be placed on board (SUMMON) and attack the opponent as
well as his creatures once per turn (ATTACK). Each creature on board can have any
number of keywords, changing their attack resolution. Available keywords are:

• B reakthrough. Creatures with this keyword deal the excessive damage to the
opponent, i.e., if their attack was higher than the target creature defense.
• C harge. Creatures with this keyword can attack in the same turn they were

summoned. By default, creatures can attack only in the following turns.
• D rain. Creatures with this keyword heal the player when attacking for the

amount of damage they deal (not their attack).
• G uard. Enemy creatures in the same lane must attack these creatures first.
• L ethal. Creatures with this keyword kill target creatures they deal damage to.
• W ard. Creatures with this keyword ignore the first damage they would receive.

After receiving any damage, the keyword is lost. It does block B , D , and L .

Item cards can be used on creatures on board (USE). Positive effects increase
target’s – creature or player – stats and give them keywords, whereas negative effects
decrease target’s stats and remove their keywords. There are three item types:

• Green, targeting player’s creatures with a positive effect.
• Red, targeting opponent’s creatures with a negative effect.
• Blue, targeting opponent or his creatures with a negative effect.

0 1 2 3 4 5 6 7 8 9 12
0

5

10

15

20

25

30

35

Card cost

C
ar
d
co
un

t

Creature Green Item Red Item Blue Item
0

20

40

60

80

100

120

Card type

C
ar
d
co
un

t

Figure 3.4: Card statistics. Most cards cost between 2 and 4 mana, with an average
of 3.76. Out of 160 cards, there are 116 creatures, 24 green, 12 red, and 8 blue items.

3.4 Related work

As for today, LoCM was used as a testbed for a couple of research papers. These
include agents utilizing reinforced learning [35], an evolutionary approach to
deckbuilding [36] and tuning parameters of heuristic functions [37].

18 CHAPTER 3. LEGENDS OF CODE AND MAGIC

Separately, LoCM is used in the Strategy Card Game AI Competition. The
competition is co-organized with IEEE Congress of Evolutionary Computation and
IEEE Conference on Games conferences since 2019. Both competitions received 9
submissions (agents) in 2019, and 4 new or upgraded in 2020. The winner of the
2020 IEEE COG competition (Chad) has been described in [38].

Interestingly, there is no standard approach for a LoCM agent yet. The best
agent in 2019 (Coac) used a handcrafted draft evaluation function and a minmax-like
search with alpha pruning of depth 3 for the battle phase. The best agent in 2020
(Chad) used weights computed using harmony search for the draft and a MCTS with
prediction of the opponent’s hand for the battle phase. Other agents most commonly
involved handcrafted heuristics but there were submissions utilizing neural networks
(ReinforcedGreediness) or almost full one-turn deep search (OneLaneIsEnough).

3.5 Version 1.0

The above description refers to the current version (1.2) of LoCM. However, the first
publicly available version of the game was slightly different. The first version (1.0)
was used in August 2018 as a CodinGame1 platform contest, attracting more than
2,000 players (or rather AI programmers) across the world [39].

The 1.0 version had only one lane of size 6 instead of two lanes of size 3. This not
only changes the size and shape of the game tree but also the impact of all keywords.
For example, the G keyword is now less valuable, as a single card no longer protects
the player fully. Similarly, cards with the L keyword have fewer targets.

Figure 3.5: In-game visualization of the battle phase, LoCM 1.0.

1https://codingame.com

https://codingame.com

Chapter 4

Evaluating Card Games

4.1 Representation

We have developed three distinct representations: Linear, BinaryTree, and Tree.
Each one implemented two operations: evalCard (used for the draft phase and as a
part of the state evaluation) and evalState (used for the battle phase).

• Linear, is a constant-size vector of doubles. Each gene (from 1 to 20) encodes
a weight of the corresponding feature. The first 12 are game state features, 6
for each of two players: current mana, deck size, health, max. mana, next turn
draw, and next rune (an indicator for an additional draw as in [6]). The other 8
are card features: attack, defense, and a flag for each of the keywords, encoded
as 1.0 when set and 0.0 when not. The final evaluation is a sum of features
multiplied by their corresponding weights.

• BinaryTree, is a pair of binary trees, encoding state and card evaluation
respectively. The leaf nodes are either constants (singular double) or features,
same as in Linear. Both trees have the same set of binary operators (nodes):
addition (l + r, where l and r are the values of left and right subtree
respectively), multiplication (l ∗ r), subtraction (l − r), maximum (max(l, r)),
and minimum (min(l, r)). The final state evaluation is calculated recursively
accumulating the tree.

• Tree, is a pair of n-ary trees, encoding state and card evaluation respectively.
The leaf nodes are identical to the ones in BinaryTree. Operators are no
longer binary, but n-ary instead – each operator stores a vector of subtrees.
Available operators are addition (

∑
), multiplication (

∏
), maximum (max),

and minimum (min). Additionally, to ensure that every operation stays well
defined, all subtree vectors are guaranteed to be nonempty. To make
subtraction possible, there is one additional, unary operator: negation (−x,
where x is the value of its subtree). The final evaluation is calculated
recursively accumulating the tree.

19

20 CHAPTER 4. EVALUATING CARD GAMES

To limit the vast space of possible evaluation functions, the final state evaluation
is a sum of evalState and evalCard for each own card on the board, minus evalCard
for each opponent card. It is a common simplification, used in e.g., [13].

Note that the expressiveness of the tree-based representations is greater, thus it
is possible to map individuals encoded as Linear to trees, but not vice versa. This
property is used in one of our experiments.

4.2 Opponent estimation

Every evolution scheme evaluates individuals either by comparing how well they deal
with a specified task, without a normalized score, or by using an external, predefined
goal. Both approaches have natural interpretations for CCGs – a win rate against
each other for the former and a win rate against a fixed opponent for the latter.

As the course of evolution using a predefined opponent will be heavily impacted
by the opponent itself, two nontrivial questions arise. What is the difference between
using only the in-population evaluation from the one using a predefined opponent?
And what is the difference between using a weak and a strong opponent? We have
conducted two experiments to answer both of these questions.

As both experiments required different evolution schemes, in total, three groups
of individuals were evolved. First one, called progressive, using the in-population
evaluation (see 5.1). Second, called weak-op, using the existing LoCM baseline agent
Baseline2 (WeakOp). And third, called strong-op, using one of the pre-evolved
Tree-from-Linear agents (StrongOp). The last two are described in 6.1.

Chapter 5

Representation Study: Trees
Versus Vectors

To measure the impact of different representations on the evolution, we ran the same
experiment multiple times, each time substituting the underlying genome structure
to one of described in 4.1. The metrics we find crucial are how well the agent performs
in a real-life scenario, that is, in a proper tournament with other agents, and whether
it progresses, i.e., plays better against own previous generations.

5.1 Experiment setup

We have evolved twelve copies of progressive agents, four for each representation.
Every run used the same parameters, that is 50 generations with a population of size
50 (population parameter), elitism of 5 individuals, and the mutation rate of 5%.
During the evaluation each two individuals played rounds times on each of drafts
drafts on each side, which makes 2 × (population − 1) × drafts × rounds games in
total. In our experiments, drafts = 10, and rounds = 10.

In order to compare the agents in a standardized real-life scenario, we ran a
tournament, replicating the Strategy Card Game AI Competition. In addition to our
evolved agents, we used two LoCM baseline agents – Baseline1 and Baseline2 – and
four contestants of 2020 IEEE COG LoCM contest1 – Chad, Coac, OneLaneIsEnough,
and ReinforcedGreediness.

1https://legendsofcodeandmagic.com/COG20/

21

https://legendsofcodeandmagic.com/COG20/

22 CHAPTER 5. REPRESENTATION STUDY: TREES VERSUS VECTORS

5.2 Learning comparison

As visible at the bottom row of Fig. 5.1, all representations successfully managed to
converge into a green triangle at the bottom left of the heatmap.

Such shape means that the following generations were not only preserving the
already gained knowledge but also slightly improving on each step. Therefore, every
representation can be evolved, playing against own previous generations. Moreover,
the progress of the Linear representation seems to be more stable, almost constant,
while tree-based representations tend to improve by making larger but sporadic leaps.

we
ak

-o
p

st
ro

ng
-o

p
pr

og
re

ss
iv

e

Linear BinaryTree Tree

Figure 5.1: Example self-play win rate heatmaps (other runs show similar properties).
Each cell represents how well the best individual of generation on the y-axis plays
against the best individual of generation on the x-axis. A bottom left green triangle,
present in all three progressive agents, proves that as the evolution progresses, so
all individuals are getting constantly better at self-play. Other heatmaps seem to be
more random, indicating no clear progression in self-play.

5.3. TOURNAMENT COMPARISON 23

This is not the case for the top and middle row, representing evolution with
a predefined opponent (described in detail in the next section). While the Linear
representation manages to preserve hardly visible progress, both tree representations
are more random, indicating no clear improvements in self-play. Furthermore, the
top row contains a few red stripes, indicating an exceptionally weak agent. It is
possible, as the evolution goal does not take self-play into consideration at all.

To measure how significant the learning progress is, we compare the win rate of
the best individual of the first and the last generation against the best individuals
of all generations.

With such a metric in mind, the Linear representation stands out again. As
presented in Fig. 5.2, both BinaryTree and Tree result in a smaller difference of
about 20% whereas the Linear representation achieves over 31% difference on
average, across all the evolution schemes.

5.3 Tournament comparison

When evolved using a fixed, weak opponent (weak-op), the difference between the
representations is significant. There is a huge, almost 10% wide, gap between Linear
(42.9% average win rate) and BinaryTree (33.8%). The Tree representation is in
between, performing slightly better than its binary counterpart and achieving 36.2%.

Results are similar when evolved using self-play evaluation and a randomly
initialized population (progressive). Again, the gradually improving Linear
representation yields strictly better results in the tournament (54.8%) than both
BinaryTree and Tree (45.6% and 45.7% respectively).

However, using a better opponent (strong-op) yields completely different
results. In this scenario, the differences between agents’ performance are far less
significant, around 4%. To be precise, Linear achieved almost 49%, BinaryTree
slightly over 45%, and Tree nearly 45% average win rate.

This matches the results of playing against own previous generations, described
in the previous section. We conclude that it is an implication of the capacity of
the representation. It also matches the general expectations, that playing against
stronger opponents leads to stronger agents.

While a more limited Linear representation finds a decent solution sooner and
steadily improves it, more capable tree-based representations regularly leap towards
the goal. More detailed tournament results are presented in Table 5.1.

24
C

H
A

P
T

E
R

5.
R

E
P

R
E

SE
N

T
A

T
IO

N
ST

U
D

Y
:T

R
E

E
S

V
E

R
SU

S
V

E
C

T
O

R
S

Table 5.1: The tournament results. Every score is the win rate (%) of the agent on the left against the agent on top.

Baseline1

Baseline2

Chad

Coac

OneLaneIsEnough

ReinforcedGreediness

BinaryTree-baseline

BinaryTree-frombest

BinaryTree-standard

Linear-baseline

Linear-frombest

Linear-standard

Tree-baseline

Tree-frombest

Tree-standard

Linear-from-Linear-standard

Tree-from-Linear-standard

G
lob

al
average

Baseline1 – 40.28 2.78 0.00 6.94 2.78 43.40 32.50 38.33 45.83 29.44 16.11 36.97 34.37 37.32 16.99 21.69 28.89
Baseline2 59.72 – 4.17 0.00 0.00 2.78 34.03 45.56 57.50 17.01 48.61 35.56 43.98 53.24 63.53 39.89 51.47 42.73

Chad 97.22 95.83 – 31.94 59.72 100.00 83.33 86.11 89.44 79.86 86.11 74.17 82.35 88.17 87.18 81.75 83.09 83.18
Coac 100.00 100.00 68.06 – 55.56 69.44 89.93 91.39 92.22 84.03 90.28 90.83 93.28 95.21 92.31 90.88 93.20 90.42

OneLaneIsEnough 93.06 100.00 40.28 44.44 – 59.72 53.82 64.17 65.83 55.21 60.00 60.56 57.42 66.20 67.52 60.64 63.24 62.07
ReinforcedGreediness 97.22 97.22 0.00 30.56 40.28 – 88.89 94.17 88.89 89.24 89.17 84.72 89.08 89.01 90.60 82.83 85.85 85.23
BinaryTree-baseline 56.60 65.97 16.67 10.07 46.18 11.11 – 35.07 38.89 43.06 36.81 26.53 49.30 36.69 33.19 23.43 27.11 33.94
BinaryTree-frombest 67.50 54.44 13.89 8.61 35.83 5.83 64.93 – 47.00 57.57 47.83 40.39 56.97 49.92 46.04 38.57 35.22 45.20
BinaryTree-standard 61.67 42.50 10.56 7.78 34.17 11.11 61.11 53.00 – 48.26 45.39 40.28 61.85 50.93 50.11 40.00 37.68 45.63

Linear-baseline 54.17 82.99 20.14 15.97 44.79 10.76 56.94 42.43 51.74 – 51.46 33.26 47.55 49.30 44.71 31.14 39.06 43.02
Linear-frombest 70.56 51.39 13.89 9.72 40.00 10.83 63.19 52.17 54.61 48.54 – 46.50 62.77 52.90 56.06 43.15 40.29 48.99
Linear-standard 83.89 64.44 25.83 9.17 39.44 15.28 73.47 59.61 59.72 66.74 53.50 – 66.69 61.69 61.26 43.58 41.07 54.92

Tree-baseline 63.03 56.02 17.65 6.72 42.58 10.92 50.70 43.03 38.15 52.45 37.23 33.31 – 42.17 36.88 28.28 23.29 36.40
Tree-frombest 65.63 46.76 11.83 4.79 33.80 10.99 63.31 50.08 49.07 50.70 47.10 38.31 57.83 – 51.25 38.04 36.38 44.96
Tree-standard 62.68 36.47 12.82 7.69 32.48 9.40 66.81 53.96 49.89 55.29 43.94 38.74 63.12 48.75 – 39.56 35.27 45.76

Linear-from-Linear-standard 83.01 60.11 18.25 9.12 39.36 17.17 76.57 61.43 60.00 68.86 56.85 56.42 71.72 61.96 60.44 – 44.36 58.12
Tree-from-Linear-standard 78.31 48.53 16.91 6.80 36.76 14.15 72.89 64.78 62.32 60.94 59.71 58.93 76.71 63.62 64.73 55.64 – 60.27

5.4. TUNING GOOD SOLUTIONS 25

5.4 Tuning good solutions

Knowing that the tree-based model is more general but also harder to learn, the
natural question is if we can use it to improve the solutions, instead of generating
them from scratch. The ideal scenario will be to reach a limit of optimization based
on the linear representation, encode obtained solutions into the tree format, and
continue evolution using this stronger model.

To verify this hypothesis, we have evolved two more agents:
Linear-from-Linear and Tree-from-Linear. Each of the four previously evolved
Linear-progressive agents was used as a base for a second evolution process.

Now, rather than randomly, the population was initialized with copies of the
base agent, each one mutated n = 5 times; hence the from-Linear suffix in their
name.

However, translation of a Linear representation into a Tree representation is
ambiguous. We have used what we believe is the most straightforward one – an Add
operator in the root with a list of Mul + Literal + Feature subtrees, one for each
of the available features.

As expected, the tournament results for such pre-evolved agents are entirely
different. For the first time, the Linear representation is not the top one. The Tree
agent performs better, ending up with an average win rate of over 60%, whereas
the Linear agent finished with 58%. This is a relatively minor but consistent
improvement that may further improve with a longer evolution.

A similar difference is visible in the process of evolution. Both representations
perform similarly, but Tree is on average above the Linear almost constantly.
Comparison of the best individuals across the generations is presented in Fig. 5.3.

Our conclusion is that both results are implications of the representation.
While the more restricted Linear is not able to progress after a certain point, more
expressive Tree benefits from the bootstrap and keeps improving. Once again,
more detailed results are presented in Table 5.1.

26 CHAPTER 5. REPRESENTATION STUDY: TREES VERSUS VECTORS

40

50

60

70
we

ak
-o

p

40

50

60

70

st
ro

ng
-o

p

0 10 20 30 40 50

40

50

60

70

Generation

pr
og

re
ss

iv
e

Linear
BinaryTree

Tree

W
in

ra
te

(%
)

Figure 5.2: Evolution progress of all the agents. Best individuals from a generation
(x-axis) fought against the top individuals of all own generations, yielding an average
win rate (y-axis).

0 10 20 30 40 50
45

50

55

60

65

70

Generation

|

Linear-from-Linear
Tree-from-Linear

W
in

ra
te

(%
)

Figure 5.3: Evolution progress of the from-Linear agents. Best individuals from a
generation (x-axis) fought against the top individuals of all own generations, yielding
an average win rate (y-axis). Each of the four Linear agents was used as a base for
the initial population twice. The two bold lines average the thin, semi-transparent
lines that are the averaged results of agents with the same base.

Chapter 6

Opponent Estimation Study:
Progressive Versus Fixed

On one hand, a decent agent – better than a fully random one – usually emerges from
the task definition itself. It is often heuristic, filled with expert knowledge about the
problem. On the other, a standard in-population evaluation is proved to yield a good
solution, e.g., using a linear combination of some expert-based features and a basic
evolution scheme. Our question is whether one of these approaches is superior to the
other in terms of real-world evaluation.

Additionally, we are interested in what the difference is between using a weak
and a strong opponent as a measure. This is often an interesting dilemma, as both
approaches may be potentially vulnerable to fast stagnation. A weak opponent may
be too easy to beat, so the win rate quickly caps at large values, while with a strong
one it may struggle to achieve any victories thus, there may be no progress at all.

One may try evaluations based on a portfolio of agents, i.e., a couple of agents
of different power. This is usually a good idea, as evaluations involving versatile
opponents make each one more valuable. However, it is computationally much more
expensive and may lead to other potential problems, like overfitting toward a local
optimum, being able to beat only weaker of the opponents in portfolio.

6.1 Experiment setup

To properly compare the two evolution schemes, one needs to compare not only their
outcomes but also the costs. In our case, the overhead of a given scheme is negligible
in comparison to the cost of simulations. Thus, we use the number of simulated
games as a metric of evolution cost. For the sake of simplicity, we assume that every
game takes the same amount of time. That is not true, as better agents tend to play
longer. In practice, the average time of a single game across the whole evolution run
is comparable between schemes.

27

28CHAPTER 6. OPPONENT ESTIMATION STUDY: PROGRESSIVE VERSUS FIXED

In progressive scenario, each two individuals played rounds games on each of
drafts drafts. In weak-op and strong-op scenarios, every individual played
population × rounds games on each of drafts drafts for each side. Overall, all three
evaluation schemes use the same number of games for each individual. In our
experiments, drafts = 10, population = 50, and rounds = 10.

6.2 Learning comparison

To verify whether the evolution progresses, we compare the best individuals of all
generations after the evolution finishes. Such progress, visualized in Fig. 5.1, is
definite in all of the progressive individuals and less significant for the opponent-
based ones. It is clear that the progressive scheme is better at this task – the
elitism in combination with the in-population evaluation implies it.

Additionally, all three heatmaps of weak-op agents have some bold red stripes.
Every stripe represents a few consecutive agents that were significantly weaker than
the local average. The same happens in other evolution schemes, but it is rather
exceptional. It is understandable, as only the progressive evolution takes
in-population evaluation into account. But also, it shows that learning against the
stronger opponent is more resilient to the forgetting issue.

6.3 Tournament comparison

The lack of progress visible in heatmaps does not imply a lack of general
improvement. As seen in Table 5.1, the two tree-based representations achieve
comparable results for both progressive and strong-op – around 45%.

However, this does not hold for the most straightforward Linear representation.
The differences between weak-op, strong-op, and progressive are large, around 6%
each.

When we compare how well both fixed-opponent agents play against their
evolution goals, we see that their scores do not correlate with the representation.
The BinaryTree representation performs best in the weak-op variant and achieved
82.9% wins against the WeakOp, while the other representations were much weaker –
65.9% and 56% for Linear and Tree respectively. At the same time, BinaryTree is
the worst in the strong-op variant, achieving only 34.1% wins against StrongOp,
whereas Linear and Tree achieved 38.8% and 36.7% wins respectively.

As presented in Fig. 6.1, all weak-op agents are strictly worse than the
strong-op since almost the beginning of the tournament. It is not the case for all
of the progressive and strong-op agents – every representation is indeed stronger
in the former variant, but the Linear-strong-op agent is superior to both tree-like
representations using progressive evolution.

6.3. TOURNAMENT COMPARISON 29

To summarize, evolution via self-play yields better agents than evolution towards
a fixed opponent. However, it is not true if the representation is not fixed, e.g.,
Tree-progressive is inferior to Linear-strong-op.

Additionally, evolution using a fixed opponent has a slightly different cost
characteristics. While evolution using self-play simulates longer games gradually,
using a fixed opponent starts with much shorter ones but ends with longer ones –
already trained agent quickly deals with initial, almost random agents and holds
better against the evolved ones. As expected, the weak-op evolution is faster than
the strong-op.

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Round

W
in

ra
te

(%
)

Baseline1 Chad OneLaneIsEnough
Baseline2 Coac ReinforcedGreediness
Linear-weak-op BinaryTree-weak-op Tree-weak-op
Linear-strong-op BinaryTree-strong-op Tree-strong-op
Linear-progressive BinaryTree-progressive Tree-progressive
Linear-from-Linear Tree-from-Linear

Figure 6.1: The tournament results. All scores (y-axis) stabilize towards their true
values as the number of rounds (x-axis) increases.

Chapter 7

Conclusion

In this work, we presented a study regarding two important aspects of evolving
feature-based game evaluation functions: the choice of genome representation
(implying the algorithm used) and the choice of opponent used to test the model.

Although our research was focused on the domain of collectible card games, the
problems stated are of general nature, and we are convinced that our observations
are applicable in the other domains as well.

The key takeaway is that having limited computational resources, it is probably
better to stick with a simpler linear genome representation. Based on our research
(which also supports intuition), they are more reliable to produce good solutions
fast.

However, with a large computational budget, we recommend applying a two-step
approach. After evolving vector-based solutions, transform them into equivalent trees
and continue learning to take advantage of a more general model.

Another important observation is that self-improvement is potentially a better
strategy than a predefined opponent when used as a goal of evolution. Definitely,
there is no point in learning against a weak opponent. Learning against a strong
opponent may be profitable but does not guarantee good performance in a broader
context (e.g., tournament). And although progressive learning may also stagnate
into some niche meta, it still seems to be more flexible in this aspect.

For future work, we plan to investigate a generalized bootstrapping-like scheme,
that would switch between the representations automatically, as soon as the evolution
progress drops below a certain threshold. Separately, we would like to apply our
approach to other tasks as well as evaluate different models, e.g., additional expert-
knowledge features or trees with more operators. When it comes to the different
evolution schemes, some kind of ensemblement of both in-population evaluation and
an external goal would be interesting. Also, we can consider the extension of using
a portfolio of agents as the opponents, with some dynamic additions and removals,
based on the win rates against the particular opponents.

31

Bibliography

[1] M. Campbell, A. J. Hoane, and F. Hsu. Deep Blue. Artificial intelligence,
134(1):57–83, 2002.

[2] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018.

[3] Arthur L Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of research and development, 3(3):210–229, 1959.

[4] Pablo García-Sánchez, Alberto Tonda, Antonio J Fernández-Leiva, and Carlos
Cotta. Optimizing hearthstone agents using an evolutionary algorithm.
Knowledge-Based Systems, 188:105032, 2020.

[5] Niels Justesen, Tobias Mahlmann, and Julian Togelius. Online evolution for
multi-action adversarial games. In European Conference on the Applications of
Evolutionary Computation, pages 590–603. Springer, 2016.

[6] Dire Wolf Digital and Sparkypants Studios. The Elder Scrolls: Legends.
Bethesda Softworks, 2017.

[7] Blizzard Entertainment. Hearthstone. Blizzard Entertainment, 2004.

[8] Amy K Hoover, Julian Togelius, Scott Lee, and Fernando de Mesentier Silva.
The Many AI Challenges of Hearthstone. KI-Künstliche Intelligenz, pages 1–11,
2019.

[9] Diego Perez, Spyridon Samothrakis, Simon Lucas, and Philipp Rohlfshagen.
Rolling horizon evolution versus tree search for navigation in single-player real-
time games. In GECCO, pages 351–358, 2013.

[10] C. B. Browne, E Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A Survey
of Monte Carlo Tree Search Methods. IEEE Transactions on Computational
Intelligence and AI in Games, 4(1):1–43, 2012.

33

34 BIBLIOGRAPHY

[11] Omid E David, H Jaap van den Herik, Moshe Koppel, and Nathan S Netanyahu.
Genetic algorithms for evolving computer chess programs. IEEE transactions
on evolutionary computation, 18(5):779–789, 2013.

[12] Magdalena Kusiak, Karol Walędzik, and Jacek Mańdziuk. Evolutionary
approach to the game of checkers. In International Conference on Adaptive
and Natural Computing Algorithms, pages 432–440. Springer, 2007.

[13] André Santos, Pedro A Santos, and Francisco S Melo. Monte carlo tree search
experiments in hearthstone. In Computational Intelligence and Games (CIG),
2017 IEEE Conference on, pages 272–279. IEEE, 2017.

[14] Mohammed Salem, Antonio Miguel Mora, Juan Julian Merelo, and Pablo
García-Sánchez. Evolving a torcs modular fuzzy driver using genetic algorithms.
In International Conference on the Applications of Evolutionary Computation,
pages 342–357, 2018.

[15] Roderich Groß, Keno Albrecht, Wolfgang Kantschik, and Wolfgang Banzhaf.
Evolving chess playing programs. 12 2002.

[16] Ami Hauptman and Moshe Sipper. Gp-endchess: Using genetic programming
to evolve chess endgame players. volume 3447, pages 120–131, 03 2005.

[17] Amit Benbassat and Moshe Sipper. Evolving both search and strategy for reversi
players using genetic programming. pages 47–54, 09 2012.

[18] Gul Muhammad Khan, Julian Miller, and David Halliday. Developing neural
structure of two agents that play checkers using cartesian genetic programming.
pages 2169–2174, 01 2008.

[19] Amit Benbassat and Moshe Sipper. Evolving board-game players with genetic
programming. pages 739–742, 01 2011.

[20] Gabriel Ferrer and W. Martin. Using genetic programming to evolve board
evaluation functions. 11 1995.

[21] Alexander Dockhorn and Sanaz Mostaghim. Hearthstone AI Competition.
https://dockhorn.antares.uberspace.de/wordpress/, 2018.

[22] Andrzej Janusz, Tomasz Tajmajer, and Maciej Świechowski. Helping AI to Play
Hearthstone: AAIA’17 Data Mining Challenge. In 2017 Federated Conference
on Computer Science and Information Systems, pages 121–125. IEEE, 2017.

[23] Jakub Kowalski and Radosław Miernik. Legends of Code and Magic. http:
//legendsofcodeandmagic.com, 2018.

[24] Shuyi Zhang and Michael Buro. Improving hearthstone ai by learning high-level
rollout policies and bucketing chance node events. In Computational Intelligence
and Games (CIG), 2017 IEEE Conference on, pages 309–316. IEEE, 2017.

https://dockhorn.antares.uberspace.de/wordpress/
http://legendsofcodeandmagic.com
http://legendsofcodeandmagic.com

BIBLIOGRAPHY 35

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

[26] Maciej Świechowski, Tomasz Tajmajer, and Andrzej Janusz. Improving
Hearthstone AI by Combining MCTS and Supervised Learning Algorithms. In
2018 IEEE Conference on Computational Intelligence and Games (CIG), pages
1–8. IEEE, 2018.

[27] Sverre Johann Bjørke and Knut Aron Fludal. Deckbuilding in magic: The
gathering using a genetic algorithm. Master’s thesis, NTNU, 2017.

[28] Pablo García-Sánchez, Alberto Tonda, Giovanni Squillero, Antonio Mora, and
Juan J Merelo. Evolutionary deckbuilding in Hearthstone. In Computational
Intelligence and Games (CIG), 2016 IEEE Conference on, pages 1–8, 2016.

[29] Aditya Bhatt, Scott Lee, Fernando de Mesentier Silva, Connor W Watson,
Julian Togelius, and Amy K Hoover. Exploring the Hearthstone deck space. In
Proceedings of the 13th International Conference on the Foundations of Digital
Games, pages 1–10, 2018.

[30] Zhengxing Chen, Christopher Amato, Truong-Huy D Nguyen, Seth Cooper,
Yizhou Sun, and Magy Seif El-Nasr. Q-deckrec: A fast deck recommendation
system for collectible card games. In 2018 IEEE Conference on Computational
Intelligence and Games (CIG), pages 1–8. IEEE, 2018.

[31] Matthew C. Fontaine, Scott Lee, L. B. Soros, Fernando De Mesentier Silva,
Julian Togelius, and Amy K. Hoover. Mapping Hearthstone Deck Spaces
Through MAP-elites with Sliding Boundaries. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 161–169, 2019.

[32] Fernando de Mesentier Silva, Rodrigo Canaan, Scott Lee, Matthew C Fontaine,
Julian Togelius, and Amy K Hoover. Evolving the hearthstone meta. In IEEE
Conference on Games, pages 1–8. IEEE, 2019.

[33] Elie Bursztein. I am a legend: Hacking hearthstone using statistical learning
methods. In CIG, pages 1–8, 2016.

[34] Łukasz Grad. Helping ai to play hearthstone using neural networks. In 2017
federated conference on computer science and information systems (FedCSIS),
pages 131–134. IEEE, 2017.

[35] Ronaldo Vieira, Luiz Chaimowicz, and Anderson Rocha Tavares. Reinforcement
learning in collectible card games: Preliminary results on legends of code
and magic. In 18th Brazilian Symposium on Computer Games and Digital
Entertainment, SBGames, pages 611–614, 2019.

36 BIBLIOGRAPHY

[36] J. Kowalski and R. Miernik. Evolutionary Approach to Collectible Card Game
Arena Deckbuilding using Active Genes. In IEEE Congress on Evolutionary
Computation, 2020.

[37] Raúl Montoliu, Raluca Gaina, Diego Perez Liebana, Daniel Delgado, and Simon
Lucas. Efficient Heuristic Policy Optimisation for a Challenging Strategic Card
Game, pages 403–418. 04 2020.

[38] Marcin Witkowski, Łukasz Klasiński, and Wojciech Meller. Implementation of
collectible card Game AI with opponent prediction. Engineer’s thesis, University
of Wrocław, 2020.

[39] CodinGame. Legends of Code and Magic – Multiplayer Game. https://www.
codingame.com/multiplayer/bot-programming/legends-of-code-magic,
2018.

https://www.codingame.com/multiplayer/bot-programming/legends-of-code-magic
https://www.codingame.com/multiplayer/bot-programming/legends-of-code-magic

	Introduction
	Background
	Evolving evaluation functions
	AI for collectible card games
	Deck archetypes

	Legends of Code and Magic
	Motivation
	Gameplay
	Draft phase
	Battle phase

	Cards
	Related work
	Version 1.0

	Evaluating Card Games
	Representation
	Opponent estimation

	Representation Study: Trees Versus Vectors
	Experiment setup
	Learning comparison
	Tournament comparison
	Tuning good solutions

	Opponent Estimation Study: Progressive Versus Fixed
	Experiment setup
	Learning comparison
	Tournament comparison

	Conclusion
	Bibliography

