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Abstract

Rolling Horizon Evolutionary Algorithm and Monte Carlo Tree Search are two
famous and widely used algorithms. They are often used for playing optimization
games. Ways in which they explore space of possible game states are very different
from each other. It is not obvious if they could be combined and whether such
combination would make sense. In this thesis, we will present our method to combine
these two algorithms and results using selected games as the example.

Rolling Horizon Evolutionary Algorithm i Monte Carlo Tree Search to dwa
znane i powszechnie używane algorytmy. Często znajdują zastosowanie do grania w
gry optymalizacyjne. Sposoby w jakie przeszukują przestrzeń możliwych stanów gry
znacznie się od siebie rożnią. Nie jest oczywistym w jakis sposób możnaby używać
ich jednocześnie i czy takie połącznie miałoby sens. W tej pracy prezentujemy nasz
sposób połączenia tych algorytmów i osiągnięte wyniki na przykładzie wybranych
gier.
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Chapter 1

Introduction

First attempts to use Artificial Intelligence (AI) to play games trace back to 1950s
when Arthur Samuel wrote a series of programs that played checkers. In 1997 Deep
Blue became the first program to beat world champion at chess - Garry Kasparov.
Since then chess AI became so strong that no human can defeat it. Although beating
strongest humans in specific games is great achievement, in the meantime researchers
started looking into problem of being able to play any game. To pursue that interest
new research area was born: General Game Playing (GGP), formally established by
Stanford University in 2005 (Love et al., 2008; Genesereth et al., 2005). In 2013
another research area was founded: General video game playing (GVGP) which
focuses on playing video games (Levine et al., 2013).

Two popular methods for developing Game AI are Monte Carlo Tree Search
(MCTS) and Rolling Horizon Evolutionary Algorithm (RHEA). They are used to
play many different games. Often in a game where MCTS works well, RHEA per-
forms badly and vice versa. Both of them have different strengths and weaknesses,
therefore method that could combine advantages of these algorithms seems promis-
ing. There were some attempts to make hybridization for MCTS with RHEA (Horn
et al., 2016). We will propose and test some approaches to combine these two
algorithms. We chose two single-player optimization games in order to test them.
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Chapter 2

Background

2.1 Algorithms

2.1.1 RHEA

Rolling Horizon Evolutionary Algorithm (RHEA) is approach that uses evolutionary
algorithms to play games that was proposed by (Perez et al., 2013). It uses sequences
of moves as individuals that build up population. Initially, each individual in the
population receives random action for each gene. A new population is then generated
from the population. Firstly it promotes E best individuals to the next population,
through elitism. Then it generates P − E new individuals, where P is size of the
population. Each individual is the product of crossover between two individuals
from the previous population, selected through some method (common choice is a
tournament, where T individuals are selected from population and the best one out
of them is used), and then mutated. Individual’s fitness value is usually a heuristic
evaluation of the game state after the moves are played. At the end of the turn,
RHEA chooses the first action in the individual with the highest fitness as move to
play. After that it removes the first action from each individual and adds new one
at the end. The name ”Rolling Horizon” comes from this behaviour.

2.1.2 MCTS

Monte Carlo Tree Search (MCTS) is tree search algorithm that builds game tree
by sampling the search space. It has been applied to a large variety of games and
other tasks with great success (Browne et al., 2012). Moreover, it has been used in
General Game Playing (e.g., (Bjornsson and Finnsson, 2009)) winning all the AAAI
GGP competitions since 2007.

It typically consists of four phases sequence: Selection, Expansion, Rollout, and
Backpropagation. It repeats the following four phases until computation time runs

9
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out.

During the Selection phase, a Tree Policy is used to traverse the tree until a
leaf node is reached. Usually policy is based on game scores and numbers of visits.
A very common policy is UCB1 (Kocsis and Szepesvári, 2006). This policy balances
between exploitation and exploration through the value of parameter C.

During the Expansion phase, to the previously selected node, which was a leaf,
new successors nodes with empty statistics are added. Then, the Rollout phase
starts. A Rollout Policy is used to play out the game until reaching the end of the
game or predefined depth. This policy can be uniformly random, but could also
use heuristics (Schadd et al., 2012). Finally the Backpropagation phase updates
the values of all nodes traversed during the Selection phase with the result of state
reached at the end of the Rollout phase.

In order to adapt MCTS to single-player games, in addition to values stored
by MCTS’s nodes we also keep the highest score ever seen in that node’s subtree,
similiar to (Schadd et al., 2012). When choosing next move, we choose a child with
the highest best score.

2.1.3 MCTS RHEA hybrids

There were some attempts to make hybridization for MCTS with RHEA.

Some of them were proposed by (Horn et al., 2016) to be used for General Video
Game AI. The main ones are:

RHEA, then MCTS for alternative actions: EAaltActions – after running the
RHEA, MCTS is ran, but it is not allowed to make the first move chosen by the
RHEA. Then best moves found by both algorithms are compared and better one is
chosen.

RHEA with rollouts: EAroll – it takes over the RHEA algorithm and extends
evaluation with rollouts. After all moves from individual are simulated, instead of
evaluating it, a predefined number of rollouts with parametrized length is performed,
and the fitness is the average of the RHEA part and the MCTS part.

In addition, several more variants were proposed, each basing on EAroll. EAroll
turned out to be the best, compared to other versions and basic RHEA or MCTS.
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2.2 Games

2.2.1 Search Race

Figure 2.1: Playing Search Race in the CodinGame online IDE. Top left – game
visualization, bottom left – information about current turn and debug, top right –
agent source code, bottom right – test cases for testing.

Search Race1 is a programming game available on the CodinGame platform
(Fig. 2.2). Everyone can write his agent using an online CodinGame IDE (Fig. 2.1)
and test it on a public arena that currently contains about 1,000 players. Most
successfully approaches are: genetic algorithms and deep learning.

Game Rules. Search Race is single player optimization game. The game is played
on map 13,000 units wide and 9,000 units high. Player control a pod racing through
a series of checkpoints. The checkpoints are circular, with a radius of 600 units.
Positions and order of checkpoints is fixed for test case. To enter a checkpoint, the
center of a pod must be within 600 units of the checkpoint center. Every turn player
can change the thrust of the pod, and change the angle that the pod is heading by
a maximum of 18 degrees.

Finally the goal of the game is to finish racing through a series of checkpoints
as fast as possible. If a player use more than 600 rounds, they lose.

At CodinGame there are 50 test cases, but many of them are similar to each
other. We removed the ones that were too similar or too easy. Then for efficiency
reasons, we end up picking 15 of them.

1https://www.codingame.com/ide/puzzle/search-race

https://www.codingame.com/ide/puzzle/search-race
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Figure 2.2: A visualization of the Search Race game.
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2.2.2 SameGame

Figure 2.3: Playing SameGame in t he CodinGame online IDE. Top left – game
visualization, bottom left – information about current turn and debug, top right –
agent source code, bottom right – test cases for testing.

Game Rules. SameGame2 is single player game played on rectangular board made
of colorful squares. We say that the squares are connected if they share an edge.
On each turn player can select any group that consist of at least two connected
squares and remove it from board. After that if there are any squares that don’t
have any other square or board border underneath they are moved down, afterward
if any column is empty, all columns to the right of it are moved left. In our case, the
game is played on a board 15 units wide and high, after each turn player receives
points equal to (n− 2)2, where n is size of removed group, additionally if after the
move board is empty player receives bonus 1000 points. Game ends when no move
is available or board is empty, goal of the player is to maximize earned points.

For SameGame we will be using 20 standard boards used in many papers
(Schadd et al., 2012; Negrevergne and Cazenave, 2017).

2https://www.codingame.com/ide/puzzle/samegame

https://www.codingame.com/ide/puzzle/samegame
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Figure 2.4: A visualization of the SameGame game.



Chapter 3

Combining RHEA with MCTS

3.1 General idea of combining

The idea is to supply each algorithm with knowledge acquired by the other one.
In MCTS, we balance its behaviour between exploration and exploitation through
the value of parameter C. We thought that we could guide the search even more
by applying results found by RHEA. This can be done by pruning certain areas
of the tree that are considered not promising or adding paths made of individuals.
In RHEA, we guide the search by modifying population that is used in further
iterations.

Our idea is to design a method, so in any moment we could switch the currently
running algorithm between RHEA and MCTS. But we are going to switch them
exactly once per turn. We distinguish two orders of running them each turn: RHEA-
MCTS and MCTS-RHEA. The first algorithm starts computation at each turn, and
the second one decides which move to make.

Figure 3.1: Example timeline for turns i and i + 1 in RHEA-MCTS. Rtime de-
scribes computation time assigned to RHEA, andMtime describes computation time
assigned to MCTS.

15



16 CHAPTER 3. COMBINING RHEA WITH MCTS

Figure 3.2: Example timeline for turns i and i + 1 in MCTS-RHEA. Rtime de-
scribes computation time assigned to RHEA, andMtime describes computation time
assigned to MCTS.

In the next sections, we will explain exactly how we make transitions between
RHEA and MCTS.

3.2 Adjusting games to be used by both RHEA and
MCTS

RHEA can be used regardless of whether player’s move is represented discretely
or continuously as opposed to MCTS that requires them to be discrete, because
of representation of move as edge in tree. In order to use MCTS in Search Race
we had to discretize available moves, so we represent set of available moves as
SRM = [−18,−9, 0, 9, 18] × [0, 200], where the first element is angle change, and
the second one is chosen thrust.

The moves in SameGame are represented as a pair (row, col), marking con-
nected group of squares’ position, there is only one pair representing single group.
The moves are already discrete, but unlike Search Race moves, not every move is
legal in current state of the game, which raises problems. Individuals representing
sequences of moves are changed during crossover and mutation phase of RHEA al-
gorithm. To make them represent legal sequences of moves, after new one is created,
during its evaluation if at some point there is chosen move that is currently not legal
we find closest group of connected squares that can be removed and set our move
to this group.
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3.3 Transition from RHEA to MCTS

3.3.1 Pruning

Population from RHEA could be used to build new MCTS tree each turn. We can
look at each individual as a path and make the tree from them. We allow MCTS to
only create new nodes at the tree levels deeper than length of the individual. We can
additionally supply nodes with information about scores calculated by RHEA and
a certain number of visits. But that way we lose information calculated in previous
turn by MCTS, which is the main reason why MCTS works. What we described
can be seen as pruning tree to a certain depth, as only at deeper levels of the tree
we would allow MCTS to expand the tree. In order to keep acquired knowledge,
we decided to use RHEA’s results to prune the MCTS tree and keep information
gathered in nodes that stayed in the tree. Pruning too deep could be a problem. To
prevent that, we simply cut each individual from RHEA at a certain depth (rather
small) and then prune the tree (Fig. 3.3).

Figure 3.3: Example of pruning two first layers of MCTS, when RHEA individuals
have length 4. Legal actions are 0, 1 and 2. White nodes are kept in tree, black ones
are removed.

3.3.2 Carrying more information

Although pruning could be useful, often sequences of moves represented by RHEA’s
individuals are longer than depth of the tree and lead to promising results, so ad-
ditionally we insert those paths into the tree. To have a little more impact on the
tree’s future traversal, we can consider each individual from RHEA’s population as
a path visited N times. That way score of that individual will have greater impact
on the average score of nodes on that path.
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3.4 Transition from MCTS to RHEA

After the phase of running MCTS, we need to decide how RHEA’s population will
look the next time it will be used. The population should consist of individuals with
high scores, but if each one is similar to the other ones, then RHEA could converge
quickly. In order to prevent that, we have to maintain two things: diversity of
population and individuals with high scores.

Firstly, let us look at the RHEA algorithm, how it maintains individuals with
high scores. It promotes some individuals through elitism to the next generation.
So we will take the one, with the highest score from the MCTS tree, and put it into
the RHEA population, which is similar to elitism with size 1. We do that by going
down the tree starting from root, choosing each time edge that leads to node with
highest max-score ever seen. We keep going down the tree until we are in the leaf
node or the length of the individual is enough for RHEA.

Now we need to generate more individuals with roughly high scores, but not
too similar to the individual with the highest score. We can sample individual by
traversing the tree from the root node. We go down the tree unless we are in the
leaf node or the length of the individual is enough for RHEA. When going down
we choose edge according to probability distribution determined by the softmax
function applied to values calculated as linear combination of mean-score and max-
score of current node’s children. In our case, it will be the average of these two
values.

We have to consider the fact that the length of individuals in RHEA could be
much longer than the depth of the MCTS tree, so individuals sampled from the tree
could be too short. We can add random moves to them, to match the length of
individuals in the RHEA. Even though we have some first moves from the MCTS
tree, we still can have solution with score much lower than max-score in that leaf
node, because MCTS could earn all the points in the rollout. Since rollouts could be
random, scores of two rollouts may vary a lot. Thus adding some random moves to
that beginning could lead us to the solution with low score. We can think about this
that way: MCTS knows which first moves are good, so it will be exploiting them
more, but it is not able to transfer that knowledge to RHEA.

To address that problem, and do not lose information about good solutions
in transition from MCTS to RHEA, we will save some rollouts. That way we can
always create individuals that do not have to be completed with any random moves
to match the length of the RHEA’s individuals, and they are guaranteed to have
proper scores.
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Figure 3.4: Rollouts are stored in the children of the root.

Many MCTS variations save the best rollout, and we will do something similar,
but we will save a bit more. For every possible next move, we want to store the best
rollout that begins with that move (Fig. 3.4).

Figure 3.5: Rollout is pushed down when the tree’s root is being changed after
game turn.

This approach works when the turn order is MCTS-RHEA however, there is a
problem with such solution. When MCTS is deciding about the chosen move (turn
order is RHEA-MCTS ), we will have only one stored rollout (Fig. 3.5).

To solve that, we will store rollouts at depth two, when MCTS is the second
algorithm. That way for each first move in the next turn we can make individual
for RHEA’s population.
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Now we can describe how exactly we will create RHEA’s population. Firstly we
will create one individual from the path from the tree with the highest score. Then
for each possible first move we create one individual from saved rollout. Remaining
ones are sampled from the tree.



Chapter 4

Experiments

4.1 Technical setup

Experiments were performed on PCs with Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz
processors belonging to Institute of Computer Science, University of Wrocław.

4.2 Algorithms’ parameters

MCTS can be parametrized by the C value, rollout or heuristic function H(s).

RHEA’s parameters are: population size, offspring size, mutation probability, mu-
tation operator, crossover operator, individual length, number of elite parents, tour-
nament size, and heuristic function H(s).

Combination’s parameters are: order of running algorithms, time given for each
algorithm, type of transitions between algorithms.

4.3 Heuristics and MCTS rollouts

4.3.1 SameGame

The heuristic function is simply scored points divided by large value to make it
normalized for MCTS.

H(s) = scored points/5000

As a rollout we use TabuColor strategy proposed by (Schadd et al., 2012),
meaning that in the beginning we chose color that is most frequent on the board.
We are not allowed to remove groups of squares of that color unless no other move

21
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is allowed. Other than that, we simply perform random moves until the end of the
game.

4.3.2 Search Race

We are using known heuristic from CodinGame. That uses following values:

• C – completed checkpoints,

• T – in-game time elapsed,

• MAX – Number checkpoints in whole game × 100,

• D – euclidean distance from pod to (next checkpoint− 3× pod’s velocity)

H(s) =

(100× (C − (T/600)))/MAX , when map is completed

(100× C − 5× log(D))/MAX ,

MCTS has problems with this game for several reasons. One of them is that
the turn limit is 600. Furthermore, the pod to drive optimally should have smooth
movement. Generally, it should maintain direction or slow down and take turns.
There is very little chance that many random moves will make smooth movements,
so it would be better to use good heuristic and make movement less chaotic. Consid-
ering this, we end up using two other rollouts for this game: the score is evaluated
game state after performing 10 random moves or game state is evaluated without
making any additional moves.

4.4 Results

4.4.1 SameGame – algorithms’ parameters

MCTS parameter C is set to 0.5.

RHEA’s parameters are set to:

• population size – 100
• offspring size – 100
• mutation probability – 0.6
• mutation operator – Uniform
• crossover operator – One-point
• individual length – 30
• number of elite parents – 3
• tournament size – 1
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4.4.2 SameGame – Running RHEA and MCTS separately

Figure 4.1: Results of MCTS algorithms with given time limit for each turn.
100% is the average score for baseline, here MCTS with time limit equal to 500ms.
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Figure 4.2: Results of RHEA algorithms with given time limit for each turn.
100% is the average score for baseline, here MCTS with time limit equal to 500ms.
Red line shows the average score of MCTS with time limit equal to 1000ms.

It is clear that MCTS outperforms RHEA in most test cases, even when RHEA
has twice the time limit (Fig. 4.1, 4.2).
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4.4.3 SameGame – Running combined RHEA and MCTS

Figure 4.3:
1 – new tree with pruning,
2 – prune tree from previous round,
3 – 2 + add population to tree,
4 – 3 + save rollouts.
100% is the average score for baseline, here MCTS with time limit equal to 500ms.
Red line shows the average score of MCTS with time limit equal to 1000ms.
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Figure 4.4:
1 – new tree with pruning,
2 – prune tree from previous round,
3 – 2 + add population to tree,
4 – 3 + save rollouts.
100% is the average score for baseline, here MCTS with time limit equal to 500ms.
Red line shows the average score of MCTS with time limit equal to 1000ms.

As we can see at figures (Fig. 4.3, Fig. 4.4), saving and pruning tree from
previous round helped a lot in almost all test cases. Adding population to tree
helped in some test cases, but not in every. And finally the breakthrough. Saving
the best rollouts to give them to RHEA always improves our scores, even up to
nearly 3 times! Now our combination is reaching some promising results.
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Figure 4.5:
RM – RHEA-MCTS,
MR – MCTS-RHEA
100% is the average score for baseline, here MCTS with time limit equal to 500ms.
Red line shows the average score of MCTS with time limit equal to 1000ms.

Now let us take a closer look at the comparison between when MCTS is the
first algorithm and when is the second one (Fig. 4.5). In versions 1, 2, and 3 we
can see that, when MCTS decides about the move, the overall score in most cases
is much greater. However, that does not hold in version 4. Although MCTS is
much stronger alone than RHEA, scores of RHEA-MCTS and MCTS-RHEA are
close to each other. Even in some cases, MCTS-RHEA has a greater average score.
Additionally, we can already see, that in some cases versions 4 are above the blue
line and close to the red one. Meaning that the average result is close to the MCTS
with twice the time limit.
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Figure 4.6: Results of algorithms with 1000ms time limit for each turn. 100% is
the average score for baseline, here MCTS with time limit equal to 500ms. Red line
shows the average score of MCTS with time limit equal to 1000ms.
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Figure 4.7: Results of algorithms with 1000ms time limit for each turn. 100% is
the average score for baseline, here MCTS with time limit equal to 500ms. Red line
shows the average score of MCTS with time limit equal to 1000ms.
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As we can see at Fig. 4.6, even when RHEA score is lower than 80% of MCTS’s
score both of ours combinations can improve score compared to MCTS, or at least
be similar. There is one test case, where RHEA is much better than MCTS, and
neither of our combinations is close to that score. This could indicate that we can
improve MCTS performance, but we can not do the same for RHEA.

At Fig. 4.7 we can see, that at least one combination improved result of the
MCTS at 16 of 20 tests cases. In a few of them, improvement is similar to the
difference between MCTS with time-limit 500ms and 1000ms.

As we already know combination could improve results, but until now time was
equally distributed for both algorithms. Now we want to test how splitting time in
different ratios would affect scores.

Figure 4.8: Results of algorithms with 1000ms time limit for each turn. 100% is
the average score for baseline, here MCTS with time limit equal to 500ms. Red line
shows the average score of MCTS with time limit equal to 1000ms. R : M describes
time division between RHEA and MCTS.
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Figure 4.9: Results of algorithms with 1000ms time limit for each turn. 100% is
the average score for baseline, here MCTS with time limit equal to 500ms. Red line
shows the average score of MCTS with time limit equal to 1000ms. M : R describes
time division between MCTS and RHEA.
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Figure 4.10: Comparison between RHEA-MCTS and MCTS-RHEA. RHEA runs
for 200ms in each of them and MCTS runs for 800ms in each of them, but order in
which they are ran differs. 100% is the average score for baseline, here MCTS with
time limit equal to 500ms. Red line shows the average score of MCTS with time
limit equal to 1000ms.
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It is hard to say which ratio is the best one. Usually the more time for MCTS
the better. We can not determine which order of running is better. RHEA-MCTS
performs better in some test cases and worse in the other ones. Often the average
scores are similar but sometimes the difference is significant.

4.4.4 Search Race – algorithms’ parameters

MCTS parameter C is set to 1.5, rollout is set to evaluate current game state.

RHEA’s parameters are set to:

• population size – 100
• offspring size – 300
• mutation probability – 0.15
• mutation operator – Diversity
• crossover operator – Uniform
• individual length – 20
• number of elite parents – 20
• tournament size – 5

4.4.5 Search Race – Running RHEA and MCTS separately

Figure 4.11: Results of RHEA algorithms with given time limit for each turn.
100% is the average score for baseline, here RHEA with time limit equal to 100ms.
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Figure 4.12: Results of MCTS algorithms with given time limit for each turn.
100% is the average score for baseline, here RHEA with time limit equal to 100ms.
Red line shows the average score of RHEA with time limit equal to 200ms.

It is clear that RHEA outperforms MCTS in every test case except one, by
about 10% (Fig. 4.11, 4.12).

4.4.6 Search Race – Running combined RHEA and MCTS

In order to use combination’s improvement that saves rollouts we have to change
previously used rollout to the one that performs 10 random steps and then evaluates
game state. The rollout is changed only in fourth tested version.
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Figure 4.13:
1 – new tree with pruning,
2 – prune tree from previous round,
3 – 2 + add population to tree,
4 – 3 + save rollouts.
100% is the average score for baseline, here RHEA with time limit equal to 100ms.
Red line shows the average score of RHEA with time limit equal to 200ms.
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Figure 4.14:
1 – new tree with pruning,
2 – prune tree from previous round,
3 – 2 + add population to tree,
4 – 3 + save rollouts.
100% is the average score for baseline, here RHEA with time limit equal to 100ms.
Red line shows the average score of RHEA with time limit equal to 200ms.
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As we can see at figures (Fig. 4.13, Fig. 4.14), there is hardly any difference in
performance of any of the improvements. Unlike improvements tested on SameGame
fourth one did not make much impact.

In order to compare RHEA-MCTS with MCTS-RHEA we will not show first
versions as it is far worse that any of other versions.

Figure 4.15: Comparison between RHEA-MCTS and MCTS-RHEA.
100% is the average score for baseline, here RHEA with time limit equal to 100ms.
Red line shows the average score of RHEA with time limit equal to 200ms.

As we can see at figure (Fig. 4.15) there are some differences, but we can not
determine one version as better than the other ones. Additionally, we can see that
besides one test case all versions are worse than RHEA with time limit 200ms.
Furthermore they often are outperformed by RHEA With time limit 100ms.





Chapter 5

Conclusion

We have presented several methods of combining MCTS with RHEA that led to
improved scores in SameGame game. However, they did not succeed in doing the
same for Search Race. From our experiments, the proposed methods seem to be able
to improve score in games in which MCTS performs better than RHEA by default.
It should be noted that the most benefiting version in SameGame that used MCTS’s
rollouts, could not be used directly for Search Race. Rollout that performed best
in Search Race was evaluating current game state, thus not producing long rollouts
that would be valuable for RHEA’s population.

5.1 Future work

Proposed methods of combination could be tested on games in which MCTS per-
forms better by default to ensure our conclusion. We could test as well games that
favour RHEA and benefit from long rollouts. Games chosen by us were single player,
both RHEA and MCTS could be applied to multiplayer games, thus combination
could be as well. Switching between algorithms more than once per turn could be
also tested.
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