
Master Thesis

Combining Deep Reinforcement

Learning and Monte Carlo Tree Search

Jelle W.M. Jansen

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science of Artificial Intelligence
at the Department of Advanced Computing Sciences

of Maastricht University

Thesis Committee:

Prof. Dr. M.H.M. Winands
Dr. J. Kowalski
Dr. K. Driessens

Maastricht University
Faculty of Science and Engineering

Department of Advanced Computing Sciences

February 27, 2023





Preface

This master’s thesis was written at the Department of Advanced Computing
Sciences, Maastricht University. This thesis describes my research into combin-
ing Deep Reinforcement Learning and Monte Carlo Tree Search. The code for
this thesis is available on Github, https://github.com/GitHubByJelle/MCTS-
NIM. First of all, I would like to thank Prof. Dr. Mark Winands and Dr.
Jakub Kowalski for their excellent supervision during this thesis. I want to
thank Chiara Sironi, M.Sc., for allowing me to use the server and helping me
to set it up. I would also like to thank Dennis Soemers, M.Sc., for assisting
me with Ludii and helping me brainstorm. Additionally, I would like to thank
Pawe l Maka, M.Sc., and Ivo Zenden, M.Sc., for frequently helping me out, as
well as Dr. Bram van den Broek, for helping me to get into this master. A spe-
cial thanks to my parents, René and Ilona Jansen, and my girlfriend, Juliette
Kreijns, for their trust and support.

Jelle W.M. Jansen
Maastricht, February 2023

https://github.com/GitHubByJelle/MCTS-NIM
https://github.com/GitHubByJelle/MCTS-NIM




Abstract

The thesis investigates new approaches to improve Monte Carlo Tree Search
(MCTS) using Deep Reinforcement Learning. Cohen-Solal introduced the “de-
scent framework”, a Deep Reinforcement Learning approach that learns to play
by self-play and uses a Convolutional Neural Network (CNN) to convert game
positions into a value estimate. Because of its newly proposed Tree Learn-
ing, the network tries to predict the value found after searching, instead of the
game theoretical value, while requiring less computational resources but still
outperforming state-of-the-art algorithms with his newly proposed completed
Unbounded Best First Minimax (UBFM) search algorithm. Although state-of-
the-art algorithms, such as AlphaGo and Polygames, use MCTS, Cohen-Solal
noted that the descent framework did not work well with MCTS.

MCTS is a simulation-based algorithm used in decision-making processes to
determine the optimal path in a tree-like search space as in a deterministic two-
player zero-sum game with perfect and complete information. The algorithm
has four phases: selection, play-outs, expansion, and backpropagation. Since
MCTS relies on many simulations, introducing Deep Reinforcement Learning
is challenging because of the high computational cost associated with the lat-
ter. Similar to state-of-the-art algorithms, such as AlphaGo and Polygames,
modifications have been made to various phases of MCTS. The play-out phase
was eliminated while backpropagating the estimated values of the expanded
node instead. However, a performance boost was achieved by enhancing the
UCT (Upper Confidence bounds applied to Trees) function used during selec-
tion, enabling the MCTS algorithm to use Network-based Implicit Minimax.
Out of the three proposed implicit UCT functions, the UCT function that uses
implicit minimax values with a decreasing α value performed best. This im-
plicit UCT function emphasizes implicit minimax values in the initial stages
and progressively focuses on backpropagated win rates as the number of visits
in a node increases. Finally, a proof-of-concept has been presented that does
involve play-outs guided by a heuristic evaluation function and dynamic early
termination.

Experiments in the games of Breakthrough and Lines of Action have shown
that the proposed algorithm outperformed both the αβ-search and an MCTS
algorithm with even higher win rates than the state-of-the-art completed UBFM
algorithm. When playing games against the completed UBFM algorithm,
the proposed MCTS algorithm using Network-based Implicit Minimax outper-
formed the completed UBFM algorithm with win percentages of 62.0% and
64.1% in the games of Breakthrough and Lines of Action, respectively.



Contents

1 Introduction 1
1.1 Game AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 2
1.4 Problem Statement and Research Questions . . . . . . . . . . . . 2
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Game Environment 5
2.1 Ludii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Breakthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Lines of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Search Algorithms 8
3.1 Methods for Traversing a Tree . . . . . . . . . . . . . . . . . . . . 8
3.2 Minimax Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 αβ Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Unbounded Best-First Minimax . . . . . . . . . . . . . . . 17

3.3 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Play-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.5 Final Move Selection . . . . . . . . . . . . . . . . . . . . . 24

3.4 Monte Carlo Tree Search Solver . . . . . . . . . . . . . . . . . . . 24
3.4.1 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 MCTS using Implicit Minimax Backups . . . . . . . . . . . . . . 25
3.5.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . 25

4 Deep Learning 27
4.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 28

4.2.1 Convolutional Layer . . . . . . . . . . . . . . . . . . . . . 29



4.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 30

5 Combining Search Algorithms and Deep Reinforcement Learn-
ing 31
5.1 Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Descent Minimax . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Action Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Action Selection during Play-out . . . . . . . . . . . . . . 32
5.2.2 Final Move Selection . . . . . . . . . . . . . . . . . . . . . 34

5.3 Terminal Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Additive Depth Heuristic . . . . . . . . . . . . . . . . . . 35
5.3.2 Score heuristic . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Data Selection for Learning . . . . . . . . . . . . . . . . . . . . . 35
5.4.1 Terminal Learning . . . . . . . . . . . . . . . . . . . . . . 37
5.4.2 Root Learning . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.3 Tree Learning . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Experience Replay . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Training the Neural Network . . . . . . . . . . . . . . . . . . . . 40
5.7 Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Monte Carlo Tree Search using Network-based Implicit Mini-
max 46
6.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.1 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.2 Exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Play-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 Training with MCTSimplicit . . . . . . . . . . . . . . . . . . . . . 50

7 Experiments 51
7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.1 Benchmark Models . . . . . . . . . . . . . . . . . . . . . . 51
7.1.2 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . 52
7.1.3 Training of Neural Network with Descent . . . . . . . . . 53
7.1.4 Computational Specifications . . . . . . . . . . . . . . . . 53

7.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.1 Completed UBFM and Completed Descent . . . . . . . . 54
7.2.2 MCTSNIM . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.3 MCTSPOC . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3.1 Number of Threads . . . . . . . . . . . . . . . . . . . . . 55
7.3.2 Initial Influence of Estimated Value . . . . . . . . . . . . 56
7.3.3 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.4 Slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.5 Minimum Influence of Estimated Value . . . . . . . . . . 57



7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.4.1 Comparing the UCT functions of MCTSNIM against

Benchmark Models . . . . . . . . . . . . . . . . . . . . . . 58
7.4.2 Completed UBFM against the Benchmark Models . . . . 60
7.4.3 MCTSNIM vs completed UBFM . . . . . . . . . . . . . . . 60

7.5 Additional Variants . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.6 Training with MCTSimplicit . . . . . . . . . . . . . . . . . . . . . 64
7.7 Results Proof of Concept . . . . . . . . . . . . . . . . . . . . . . 65
7.8 Lines of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Conclusions and Future Research 69
8.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendices 78

A Number of Games for Experience Replay 79

B Parameter Selection of MCTSbase and MCTSPOC 81

C Additional Variants 83



List of Figures

2.1 Breakthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Lines of Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Traverse order of the game tree . . . . . . . . . . . . . . . . . . . 9
3.2 Legal game state during chess . . . . . . . . . . . . . . . . . . . . 13
3.3 Four phases of Monte Carlo Tree Search (adapted from [15]) . . . 20

4.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Conversion of the game state to CNN input . . . . . . . . . . . . 29
4.4 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Padding of three . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Search tree of the descent search algorithm playing a game against
itself until a proven win for the first player is found . . . . . . . . 36

5.2 Terminal learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Root learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Tree learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Preventing stepping away from the guaranteed win, by using com-

pletion (inspired by [18]) . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Three phases of MCTSNIM (adapted from [15]) . . . . . . . . . . 49

7.1 CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Average iterations/second on the initial board positions when

using a different number of threads . . . . . . . . . . . . . . . . . 55
7.3 Win percentage of MCTSNIM over different αinit values against

αβbench for 100 games . . . . . . . . . . . . . . . . . . . . . . . . 56
7.4 Win percentage of MCTSNIM over different C values against

αβbench for 100 games . . . . . . . . . . . . . . . . . . . . . . . . 57
7.5 Win percentage of MCTSNIM over different s values against

αβbench for 100 games . . . . . . . . . . . . . . . . . . . . . . . . 57
7.6 Win percentage of MCTSNIM over different αmin values against

αβbench for 100 games . . . . . . . . . . . . . . . . . . . . . . . . 58



A.1 Performance of Neural Network after training with different num-
ber of games in experience replay . . . . . . . . . . . . . . . . . . 79

B.1 Trying different α and C values to tune the parameters of
MCTSPOC and MCTSbase . . . . . . . . . . . . . . . . . . . . . . 81

I



List of Tables

3.1 Savings of traversing minimal game tree compared to minimax,
with a branching factor of 35 . . . . . . . . . . . . . . . . . . . . 12

7.1 Win percentage of several parallelized MCTS implementations
with different enhancements against MCTSdefault for 100 games
of Breakthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 MCTSNIM models using different UCT functions . . . . . . . . . 58
7.3 Win percentage of MCTSNIM using different implicit UCT func-

tions against the benchmark models with 1 second per move for
300 games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 P-values of the proposed UCT functions used by MCTSNIM

against MCTSbase . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.5 Win percentage of MCTSalpha against MCTSalpha with 1 second

per move for 300 games . . . . . . . . . . . . . . . . . . . . . . . 60
7.6 Win percentage of completed UBFM against the benchmark mod-

els with 1 second per move for 300 games . . . . . . . . . . . . . 60
7.7 P-values of MCTSNIM against completed UBFM with respect to

the benchmark models . . . . . . . . . . . . . . . . . . . . . . . . 60
7.8 Win percentage of MCTSNIM against completed UBFM with 1

second per move for 500 games . . . . . . . . . . . . . . . . . . . 61
7.9 Performance of MCTSNIM and completed UBFM against bench-

mark models after training with different MCTSimplicit variants . 64
7.10 Win percentage of MCTSPOC against the benchmark models and

completed UBFM with 1 second per move . . . . . . . . . . . . . 65
7.11 P-values of MCTSPOC against completed UBFM with respect to

the benchmark models . . . . . . . . . . . . . . . . . . . . . . . . 65
7.12 Win percentage of MCTSPOC against MCTSalpha and

MCTScombined with 1 second per move for 300 games . . . . . . . 65
7.13 Win percentage of MCTSalpha, MCTScombined and completed

UBFM against the benchmark models with 1 second per move
for 300 games of Lines of Action . . . . . . . . . . . . . . . . . . 66

7.14 P-values of MCTSalpha and MCTScombined against completed
UBFM with respect to the αβbench in Lines of Action . . . . . . 67

II



7.15 Win percentage of MCTSalpha and MCTScombined against com-
pleted UBFM with 1 second per move for 500 games of Lines of
Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.16 Win percentage of MCTSalpha against MCTScombined with 1 sec-
ond per move for 300 games of Lines of Action . . . . . . . . . . 68

C.1 Win percentage of other variations against completed UBFM for
100 games (50 as player one, 50 as player two). . . . . . . . . . . 83

III



Chapter 1

Introduction

The thesis investigates new approaches to improving Monte Carlo Tree Search
using Deep Reinforcement Learning. This chapter is organized as follows. Sec-
tion 1.1 discusses Artificial Intelligence in games in general. Next, Section 1.2
explains different search algorithms used to play games before explaining in
more detail in Chapter 3. Furthermore, Section 1.3 explains how reinforcement
learning is used to enrich these search algorithms before this is discussed in more
detail in Chapter 5. After that, the problem statement and research questions
attempted to be answered by this thesis are discussed in Section 1.4. Lastly,
Section 1.5 provides a general overview of how this thesis is further structured.

1.1 Game AI

Artificial Intelligence (AI) that is able to play games has become increasingly
popular in recent years. With many successes in various games, it has become
one of the most popular areas of AI research. One of the main challenges
in game playing is decision-making: what is the best action in the current
state of the game? While not trivial, several search algorithms exceeded the
human level of play in multiple games. The αβ search algorithm [30], including
multiple enhancements, has led to Deep Blue [12] defeating the human world
chess champion, Garry Kasparov, in 1997. However, in some games, such as
Go, the αβ search algorithm was unsuccessful in reaching an expert level of
play. DeepMind changed this by using Monte Carlo Tree Search (MCTS) [21,
31], combined with Deep Reinforcement Learning (supervised and unsupervised
learning), in AlphaGo [50]. AlphaGo was able to beat the 9-dan professional,
Lee Seedol, without handicap on a full-sized 19×19 board. DeepMind even
improved its search engine twice, called AlphaGo Zero [52], and AlphaZero [51].

1



1.2 Search Algorithms

As mentioned in Section 1.1, search algorithms explore the search space of the
current game state to find the best possible action to play. Two famous search
algorithms are αβ and MCTS. αβ is an enhancement to the minimax search
algorithm, eliminating the need to search large parts of the game tree using
pruning. The default αβ uses heuristics to explore the search space of the
current game state with uniform search depth. Alternatively, Unbounded Best-
First Minimax (UBFM) [32] explores the search space of the current game state
with a non-uniform search depth by iteratively expanding the best sequence of
actions in the game tree.

However, once the branching factor (number of possible moves) gets too
high, or it is too hard to create heuristic functions (as seen in Go), αβ reaches
its limit. MCTS tackles these problems by only focusing on promising paths of
the game tree while using simulated play-outs to evaluate a game state. This
allows MCTS to work without the need of human knowledge for the creation of
a heuristic evaluation function.

By combining both MCTS and minimax, the strengths of both approaches
can be used, which leads to stronger play, as seen in several successful attempts.
Some approaches use minimax during the MCTS play-out [39, 60] or even replace
the play-out (partially) [36, 52, 62]. In contrast, others use minimax to back
up the heuristic evaluations implicitly and use these during the selection step
of MCTS [33].

1.3 Deep Reinforcement Learning

To improve the search algorithms’ performance concerning win rate, it is possible
to replace heuristic evaluations with Deep Reinforcement Learning (DRL) to
better evaluate game states. Previously, DeepMind combined DRL with MCTS,
as mentioned in Section 1.1, to enhance the algorithm’s performance. However,
in [18], Cohen-Solal proposed an alternative DRL approach called the “descent
framework”, which could be used with multiple search algorithms. Using this
framework, a UBFM based search algorithm was trained that outperformed an
AlphaZero-based search algorithm [20].

1.4 Problem Statement and Research Questions

As mentioned several times, DRL combined with search algorithms has exceeded
superhuman level of play in multiple instances. However, since the the descent
framework was able to outperform the state-of-the-art combination of MCTS
and DRL (AlphaZero) [20], the question arose if it was possible to adapt MCTS
to use the DRL approaches of Cohen-Solal. This resulted in the following prob-
lem statement:

2



How to improve Monte Carlo Tree Search by using Deep Reinforcement
Learning

Even though the state-of-the-art algorithms are based on MCTS [14, 50,
52, 51], Cohen-Solal mentioned that the descent framework resulted in poor
performances in combination with MCTS [18, 20]. As discussed in Section
1.2, a promising enhancement to MCTS called MCTS with implicit minimax
backups could potentially resolve this issue. As opposed to UBFM, which only
uses the evaluation of game states, this enhancement will also use average win
rates to make more informed decisions. However, changes need to be made to
architecture to make this work, resulting in the first research question:

1. Can Deep Reinforcement Learning and Monte Carlo Tree Search using
implicit Minimax backups be combined?

Search algorithms usually only perform well on a handful of games. For
instance, minimax mainly performs well in games where the path to a win is
narrow, while MCTS mainly performs well when it is hard to create heuristic
evaluation functions. For example, the UBFM algorithm performs well in Hex
[20], while the MCTS algorithm with implicit minimax backups performs well
in Kalah, Breakthrough, and Lines of Action [33]. This results in the second
research question:

2. On which perfect-information games does the model perform well?

The descent framework focuses on using the evaluations of game states as
the primary source of information to train the search algorithm. Furthermore,
the integration of the descent framework with the enhanced MCTS algorithm
has the potential to enhance the performance of the descent framework itself
since the integration allows for more informed decisions to be made, resulting in
a better-performing DRL process. This results in the third research question:

3. Can the enhanced MCTS algorithm improve the descent framework?

Determining the effectiveness of the enhanced MCTS algorithm and its po-
tential to surpass existing techniques requires comparing it to state-of-the-art
algorithms. The UBFM algorithm has shown to be a strong performer against
state-of-the-art algorithms [18], making it a good benchmark for evaluating the
performance of the enhanced MCTS algorithm. This leads to the final research
question:

4. How does the enhanced MCTS algorithm perform against state-of-the-art
algorithms?

1.5 Thesis Outline

The thesis first introduces the reader to the background knowledge required to
understand the main part fully. The game environment is discussed in Chapter

3



2. This includes the games and game rules of the games used during the research,
but also the general game system used. In Chapter 3, the search algorithms
are explained in more detail, followed by a more detailed explanation of Deep
Learning in Chapter 4. Then, Chapter 5 reviews various approaches to combine
search algorithms with Deep Reinforcement Learning. In Chapter 6, the main
part of this thesis is discussed, combining Deep Reinforcement Learning and
MCTS with implicit minimax backups. This is followed by the configuration and
setup of the experiments in Chapter 7. The thesis concludes with a discussion
of the problem statement and the four research questions and wraps up with
possible future research in Chapter 8.

4



Chapter 2

Game Environment

The game used during the research and experiments is a deterministic two-player
zero-sum game with perfect and complete information. First, the general game
system used is discussed in Section 2.1. Besides that, this chapter also provides
an overview of the games used during the experiments. Section 2.2 discusses
the game Breakthrough, and Section 2.3 discusses Lines of Action.

2.1 Ludii

Rather than implementing the game, a general game system called Ludii is
used to play games. Ludii was selected because it is equal to or better than
other advanced General Game Systems [42]. Ludii features an interface for
implementing external agents, which can then be imported into Ludii’s GUI
and used to play a Ludii game. Ludii offers more than 1,000 implemented
Ludii games, as well as search algorithms, which can be used as benchmark
algorithms. The custom search algorithms can be evaluated conveniently since
Ludii provides programmatic access to Ludii’s game as well [9].

2.2 Breakthrough

Dan Troyka invented Breakthrough in 2000, which won the 8×8 Game Design
competition in 2001, organized by the Abstract Games magazine [28]. The game
can be played on various board sizes but is most common on an 8×8 chessboard
with initially 16 pieces on its two back ranks for both players (see Figure 2.1a).
Both players take turns to move. Each turn, a player must move one of her
pieces, where the player is not allowed to pass.

Pieces may move one square forward into an empty square, one step diag-
onally into an empty square, or one step diagonally into a square occupied by
a piece of the enemy player. In the last scenario, the enemy piece is captured
and removed from the board to no longer be part of the game (see Figure 2.1b).

5



(a) Initial board (b) Legal moves

Figure 2.1: Breakthrough

So, a piece is not allowed to move into a square with a friendly piece or cap-
ture a piece on the square in front forward. The player whose piece reaches the
opponent’s back rank or captures all enemy pieces wins. A draw is impossible
[28].

2.3 Lines of Action

Lines of Action was invented by Claude Soucie around 1960 and described by
Sid Sackson in 1969 [45]. Similar to Breakthrough, the game is played on an
8×8 board. Initially, 12 black pieces from player one are positioned in two ranks
along the top and the bottom of the board, while the 12 white pieces from player
two are positioned at the two files at the left and right of the board (see Figure
2.2a). Both players take turns to move. Each turn, a player must move one of
her pieces, where the player is not allowed to pass.

Pieces move orthogonally or diagonally, advancing the same distance as the
number of pieces (both friendly and opponents) on the line of their movement,
see Figure 2.2b. The pieces may only jump over friendly pieces. Thus it is not
allowed to jump over enemy pieces, see Figures 2.2c. However, an enemy piece
can be captured and eliminated from the game by landing on its square (see
Figure 2.2b).

The player who first connects all their pieces into a contiguous unit, with con-
nections being either orthogonal or diagonal, wins the game (see Figure 2.2d).
A player who is reduced to a single piece wins the game since, by definition, all
his pieces are united. If a move (resulting from a capture) leads to both players
having all their pieces connected in a contiguous unit, the game is a draw. If a
player cannot move, this player losses.

6



(a) Initial (b) Legal moves [58]

(c) Jump over opponent pieces (d) Terminal game position

Figure 2.2: Lines of Action

7



Chapter 3

Search Algorithms

All deterministic two-player zero-sum games with perfect and complete infor-
mation can be represented using a game tree, which can be explored using a
search algorithm. A node in the game tree represents the game state, whereas
the branches represent all legal actions for that specific game state. The levels
of the game tree alternate between the two players, where each level represents
a ply [46]. The search algorithm aims to find the best-performing action of
the current game state. This chapter starts by describing two different search
methods in Section 3.1, depth-first and best-first search. These methods can be
used for searching and traversing a tree data structure. This is followed by sec-
tions describing search algorithms used to play games in this thesis. Section 3.2
described two different minimax search algorithms based on depth-first search
and best-first search, together with their enhancements. Next, in Section 3.3,
Monte Carlo Tree Search (MCTS) is explained, together with the enhancements
used to improve the algorithm. Lastly, in Section 3.5, a combination of MCTS
and minimax, using implicit minimax backups, is discussed.

3.1 Methods for Traversing a Tree

Both depth-first and best-first search are methods to traverse a tree data struc-
ture. Depth-first search starts in the root node and explores as far as possible
across each branch before backtracking, resulting in a uniform exploration of
the tree data structure. Best-first search starts in the root node and recursively
expands the node with the best score, resulting in a non-uniform exploration of
the tree data structure.

Depth-first search usually expands more nodes than best-first search. How-
ever, best-first search requires an exponential amount of space since all nodes
need to be kept in memory, while depth-first search only requires space linear
in the maximum search depth. See Figure 3.1a and 3.1b for examples. The
maximizing player (player one) is indicated by a square, while a circle indicates
the minimizing player (player two).

8



(a) Depth-First Search

(b) Best-First Search

Figure 3.1: Traverse order of the game tree

The number of edges from the node to the tree’s root node is called the
depth of the tree, where the root node has a depth of 0. The average number
of children a node has is called the branching factor.

3.2 Minimax Search

The minimax search algorithm [57] is a recursive algorithm and is most com-
monly used for choosing the best move in a two-player game. Minimax deter-
mines an approximated value, after a certain number of moves, with perfect
play according to an evaluation function. Since in zero-sum games, one player
wins while the other player loses, one player wants to maximize her gain, while
the other player wants to minimize her gain of that player. Because of this,
minimax alternates between maximizing and minimizing the score recursively
for each ply in the tree [38]. This can also be seen in Figure 3.1, where a square
indicates the maximizing player, and a circle indicates the minimizing player.

Minimax uses depth-first search by default [38] (see Algorithm 1, which
shows the pseudocode of minimax), but can also be used with best-first search
[32]. Both combinations are discussed in Subsections 3.2.1 and 3.2.2, respec-
tively.

3.2.1 αβ Search

When minimax is combined with depth-first search, the algorithm explores all
nodes until the specified depth. However, as the search depth of minimax in-

9



Algorithm 1 Minimax search algorithm

1: function Minimax(state, depth, maximizing)
2: if depth = 0 or node = terminal then
3: return evaluate(state)
4: end if
5: if maximizing then
6: score = -∞
7: for all actions in state do
8: child = Apply(state, action)
9: score = Max(score, Minimax(child, depth-1, False))

10: end for
11: else
12: score = ∞
13: for all actions in state do
14: child = Apply(state, action)
15: score = Min(score, Minimax(child, depth-1, True))
16: end for
17: end if
18: return score
19: end function

creases, the number of nodes explored increases exponentially. The αβ search
algorithm [30] is a significant enhancement of minimax since it seeks to decrease
the number of nodes explored with minimax by shallow- and deep-pruning large
portions of the game tree.

This is done by terminating the evaluation of a move if at least one possible
option proves the move is worse than a previously examined move. One move
is enough to end the evaluation since optimal play is assumed. The algorithm
keeps track of the moves by using a lower bound (α) and upper bound (β), for
the maximizing and minimizing player, respectively. Even though αβ search
prunes many subtrees, it returns the same value as minimax. See Algorithm
2 for the pseudocode of this algorithm. Many enhancements to this algorithm
exist. Only the enhancements implemented in Ludii are discussed in the rest of
this subsection.

Move Ordering

αβ search relies on searching the best move first. If the best move, according
to the evaluation function, is examined first at every node, the minimax value
is obtained from a traversal of the minimal game tree [38]. Instead of exploring
bd nodes, where b is the branching factor and d is the depth of the tree, Knuth
and Moore [30] prove that only bd

d
2 e + bb

d
2 c − 1 nodes need to be explored. An

example of the savings of this algorithm can be seen in Table 3.1. For this
example, a branching factor of 35 is used, equal to the average branching factor
of chess [11].

10



Algorithm 2 αβ search algorithm

1: function AlphaBeta(state, depth, α, β, maximizing)
2: if depth = 0 or node = terminal then
3: return evaluate(state)
4: end if
5: if maximizing then
6: bestValue = -∞
7: for all actions in state do
8: child = Apply(state, action)
9: value = AlphaBeta(child, depth-1, α, β, False)

10: if value ≥ bestValue then
11: bestValue = value
12: α = Max(α, bestValue)
13: if bestValue ≥ β then
14: break . β cut-off
15: end if
16: end if
17: end for
18: else
19: bestValue = ∞
20: for all actions in state do
21: child = Apply(state, action)
22: value = AlphaBeta(child, depth-1, α, β, True)
23: if value ≤ bestValue then
24: bestValue = value
25: β = Min(β, bestValue)
26: if bestValue ≤ α then
27: break . α cut-off
28: end if
29: end if
30: end for
31: end if
32: return bestValue
33: end function

11



Depth bd bd
d
2 e + bb

d
2 c − 1

1 35 35
2 1225 69
3 42875 1259
4 1500625 2449
5 52521875 44099
6 1838265625 85749
7 64339296875 1543499
8 2251875390625 3001249

Table 3.1: Savings of traversing minimal game tree compared to minimax, with
a branching factor of 35

Selecting the best move for each node is a difficult task since, in most cases,
the best move is yet to be discovered. Because of this, traversing the minimal
game tree is mostly theoretical. In practice, more nodes will be explored before
obtaining the minimax value.

Iterative Deepening

One technique for ordering the moves of the root node is by using Iterative
Deepening [22, 54]. Iterative Deepening first executes search at depth 1, then
depth 2, then depth 3, and in like manner. Even though it is not immediately
apparent why this would be more efficient since more searches need to be com-
pleted (b1 + b2 + b3 + . . . ), it speeds up the search since the moves of the root
node can be ordered based on the information of the previous search [63]. This
algorithm can be repeated until no time is left for further search or when the
whole tree has been traversed.

Transposition Tables

In many board games, a reoccurrence of a game position, called transposition,
can occur. As an example of a transposition during a chess game, see Figure 3.2.
The position shown in Figure 3.2 can be reached by making the moves: 1. e4 e5,
2. Nf3 or 1. Nf3 e5, 2. e4. To prevent the αβ search algorithm from searching the
same subtree twice, a transposition table can be used [4]. If the transposition
table contains the same game position, with similar or higher depth, the stored
value can be used for that position, resulting in less search.

The transposition table stores the most important information of the search
process for each game position. These are

� Value

� Type of value (flag: exact value, lower bound, upper bound)

� Best move

� Search depth

� Hash value (discussed later)

12



Figure 3.2: Legal game state during chess

Algorithm 3 shows how the transposition table can be added to αβ search to
keep track of the data. On top of recognizing transpositions, the transposition
table can also be used for ordering the moves in combination with Iterative
Deepening, such that the “best” move is played first, not only for the root node
but for all stored nodes.

Zobrist hashing

Instead of saving the entire board, Ludii [9, 42], the general game system used,
uses Zobrist hashing [64] to create a hash value of n-bits for each game position.
These hash values are then used to keep track of the transpositions.

Zobrist hashing uses XOR (indicated with ⊕). The following properties for
the ⊕-operator with a random sequence rl of n-bit integers can be assumed [64]:

1. Commutative: r1 ⊕ r2 = r2 ⊕ r1.

2. Associative: (r1 ⊕ r2)⊕ r3 = r1 ⊕ (r2 ⊕ r3).

3. Inverse: r1 ⊕ r1 = 0.

4. If si = r1 ⊕ r2 ⊕ · · · ⊕ ri then si is a random sequence.

5. si is distributed uniformly.

At the program’s initialization, an array of pseudorandom numbers must be
created for all distinct piece and board square combinations. For example, in
chess, there are m different pieces (m = 12, 6 for white, and 6 for black) and n
different squares on the board (n = 64). This means that m × n = 768 pseu-
dorandom numbers (i.e., rm,n) must be created to express all board positions.
Additionally, one pseudorandom number needs to be created to encode the side
to move. The hash value of the initial game position can be created by XOR-ing
all random numbers linked to the initial board set-up:

rwhite rook,a1 ⊕ rwhite knight,b1 ⊕ rwhite bisschop,c1 ⊕ · · · ⊕ rblack rook,h8

13



Algorithm 3 Transposition table added to the αβ search algorithm

1: function AlphaBetaWithTT(state, depth, α, β, maximizing)
2: αold = α
3: entry = retreive(state) . Transposition table look-up
4: if entry.depth ≥ depth then . If position is not found, entry.depth = -1
5: if entry.flag = Exact then
6: return entry.value
7: else if entry.flag = LowerBound then
8: α = Max(α, entry.value)
9: else if entry.flag = UpperBound then

10: β = Min(β, entry.value)
11: end if
12: if α ≥ β then
13: return entry.value
14: end if
15: end if

Perform AlphaBeta(state, depth, α, β, maximizing) as seen in Algorithm
2. Additionally, besides the bestValue, the bestMove needs to be saved
as well (see lines 11 and 24 of Algorithm 2).

16: if bestValue ≤ αold then
17: flag = UpperBound
18: else if bestValue ≥ β then
19: flag = LowerBound
20: elseflag = exact
21: end if
22: store(state, bestMove, bestValue, flag, depth) . Stores the

information in the TT
23: return bestValue
24: end function

14



Because of the inverse property, the hash value can be incremented, e.g.,
when making a move, a piece can be removed by XOR-ing with rpiece,from square

and be added to the new position by XOR-ing with rpiece,to square:

hash value new = hash value old⊕ rpiece,from square ⊕ rpiece,to square

Of course, more “difficult” moves, such as capturing, require more opera-
tions. But can (in most cases) still be achieved incrementally.

Terminal and leaf evaluation

Evaluating terminal nodes (i.e., nodes of terminal game positions) for two-player
zero-sum games can be done by using the following score: +1 if player one wins,
0 for a draw, and -1 if player two wins [18].

Reaching the terminal game positions of a game requires too much searching.
Because of this, many leaf nodes need to be evaluated using an evaluation
function.

Evaluation functions are needed to give an estimated value of the game’s
position. These functions have to correlate with the true (game theoretical)
value. The stronger the correlation, the more valuable the evaluation function.
Please note that in the αβ framework, all values will be calculated with respect
to the first player.

For αβ search, a linear heuristic evaluation function is used most commonly
because these can be calculated relatively fast. Heuristic features are deter-
mined, multiplied by a weight, and summed to calculate a heuristic value. Ludii,
the general game system used, implemented a wide variety of heuristic features
(called “heuristic terms”) that can be used in the heuristic evaluation function.
These are [8]:

� centreProximity
Defines a heuristic term based on the proximity of pieces to the center of
a game’s board.

� componentValues
Defines a heuristic term based on the values of sites that contain compo-
nents owned by a player.

� cornerProximity
Defines a heuristic term based on the proximity of pieces to the corners of
a game’s board.

� currentMoverHeuristic
Defines a heuristic term that only adds weight for the player whose turn
it is in the current game state.

� influence
Defines a heuristic term that multiplies its weight by the number of moves
with distinct “to” positions that a player has in a current game state,
divided by the number of playable positions that exist in the game.

15



� influenceAdvanced
Defines a heuristic term that multiplies its weight by the number of moves
with distinct “to” positions that a player has in a current game state,
divided by the number of playable positions that exist in the game. Com-
pared to “influence”, this is a more advanced version that will also attempt
to gain non-zero estimates of the influence of players other than the current
player to move.

� intercept
Defines an intercept term for heuristic-based value functions per player.

� lineCompletionHeuristic
Defines a heuristic state value based on a player’s potential to complete
lines up to a given target length [6].

� material
Defines a heuristic term based on a player’s material on the board and in
their hand.

� mobilitySimple
Defines a simple heuristic term that multiplies its weight by the number
of moves a player has in a current game state.

� mobilityAdvanced
Defines a more advanced mobility heuristic that attempts to also compute
non-zero mobility values for players other than the current mover.

� nullHeuristic
Defines a null heuristic term that always returns a value of 0.

� ownRegionsCount
Defines a heuristic term based on the sum of all counts of sites in a player’s
owned regions.

� playerRegionsProximity
Defines a heuristic term based on the proximity of pieces to the regions
owned by a particular player.

� playerSiteMapCount
Defines a heuristic term that adds up the counts in sites corresponding to
values in Maps where Player IDs (e.g., 1, 2, etc.) may be used as keys.

� regionProximity
Defines a heuristic term based on the proximity of pieces to a particular
region.

� score
Defines a heuristic term based on a Player’s current score in a game.

� sidesProximity
Defines a heuristic term based on the proximity of pieces to the sides of a
game’s board.

16



� threatenedMaterial
Defines a heuristic term based on the threatened material (which oppo-
nents can threaten with their legal moves).

� threatenedMaterialMultipleCount
Defines a heuristic term based on the unthreatened material (which oppo-
nents cannot threaten with their legal moves).

� unthreatenedMaterial
Defines a heuristic term based on the unthreatened material (which oppo-
nents cannot threaten with their legal moves).

Depending on the game, a selection of heuristic features can be made to
create a heuristic evaluation function. Ludii provides a fine-tuned selection of
features for a variety of games. For example, Breakthrough uses a weighted
combination of lineCompletionHeuristic, mobilitySimple, influence, ownRegion-
sCount, centreProximity, cornerProximity, sidesProximity, playerRegionsProx-
imity, regionProximity, material, unthreatenedMaterial, threatenedMaterial and
threatenedMaterialMultipleCount, while Lines of Action only uses centreProxim-
ity. However, a more simplistic but game-specific heuristic evaluation function
may also produce good results [33]. For example, the Breakthrough heuristic
evaluation function proposed in Maarten Schadd’s thesis [47] assigns each piece
a score of 10 and the furthest row achieved as 2.5. The heuristic evaluation
functions can be easily scaled with a slope and a sigmoid function.

Besides heuristic evaluation functions, a Neural Network (see Section 4 for
more information) can also be used to evaluate leaf nodes. Even though Neural
Networks can create better evaluation functions [50] (as seen in AlphaZero), a
significant increase in time is required to calculate the evaluation value. Tech-
niques to determine the weights of these Neural Networks are discussed in Sec-
tion 5.

For each leaf evaluation function, a choice must be made between the cor-
relation with the true value and the computational complexity. If it takes too
long to determine the leaf evaluation, less search will be performed, but if the
leaf evaluation has a low correlation with the true value, a non-optimal search
will be performed.

3.2.2 Unbounded Best-First Minimax

As mentioned in Section 3.2, minimax can also be used with the best-first search
method. Korf and Chickering [32] were the first to propose the best-first mini-
max search algorithm, but many other variants have also been designed. Cohen-
Solal designed a variant of the best-first minimax search algorithm, called Un-
bounded Best-First Minimax (UBFM) [18], and enhanced the UBFM algorithm
to perform better in combination with DRL. This led to the descent algorithm,
which is explained in more detail in Section 5.1. See Algorithm 4 for the pseu-
docode of the UBFM algorithm.

Note that similarly to Iterative Deepening, this search can continue until
no time is left. As seen in Algorithm 4, all explored nodes are stored using a

17



Algorithm 4 Unbounded Best-First Minimax search algorithm

1: function UBFM iteration(state, TT, first player)
2: if state is terminal then
3: return evaluate(state)
4: else
5: if state not in TT then
6: for all actions in state do
7: child = Apply(state, action)
8: values[child] = evaluate(child)
9: end for

10: entry = store(state, values) . Store the information in the TT
11: else
12: entry = Retreive(state) . Retreive information from the TT
13: action = best action(state, entry, first player)
14: child = Apply(state, action)
15: values[child] = UBFM iteration(child, TT)
16: store(state, values)
17: end if
18: action = best action(state, entry, first player)
19: child = Apply(state, action)
20: return values[child]
21: end if
22: end function

23: function best action(state, entry, first player)
24: if first player then
25: return arg max

action∈Actions
entry.values[Apply(state, action)]

26: else
27: return arg min

action∈Actions
entry.values[Apply(state, action)]

28: end if
29: end function

30: function UBFM(state, maxTime, firstPlayer)
31: startTime = time()
32: while time() - startTime < maxTime do
33: UBFM iteration(state, TT, first player)
34: end while
35: return final move selection(state, TT, first player)
36: end function

18



Transposition Table (see Section 3.2.1 for more information). Since the children
are selected in minimax fashion (see best action) the evaluation of all states
is with respect to the same player, player one.

ε-greedy

Selecting only the best action during the search will result in low exploration and
high exploitation. The search algorithm will mainly focus on what it already
knows while not improving its knowledge for long-term benefit. Because of this,
instead of selecting the best action, ε-greedy can be used. This algorithm takes a
random action with probability ε while taking the best action with probability
(1 − ε). See Algorithm 5 for the pseudocode. Algorithm 5 could be used in
UBFM iteration (see Algorithm 4) by replacing best action on line 13 and
18.

Algorithm 5 ε-greedy selection algorithm

1: function epsilon greedy action(state, entry, first player, epsilon)
2: if UNIFORM(0,1) < epsilon then . Uniform number
3: return Random(actions) . Selected uniformly
4: else
5: return best action(state, entry, first player)
6: end if
7: end function

Safest child

Alongside this enhancement, a more robust final action selection can be achieved
by selecting the most visited child of the root node instead of selecting the best
action (see Algorithm 6). This is because the most visited child has been selected
most often for having the best action during the search. Cohen-Solal showed in
[18] that this led to better play. This requires to use of Algorithm 6 instead of
final move selection in Algorithm 4 on line 35. The UBFM algorithm with
this enhancement is denoted as UBFMs. Take note, that the store function
in lines 10 and 16 of UBFM iteration also requires an additional save of the
visit count.

Algorithm 6 Selecting the safest move for final move selection

1: function safest move selection(state, TT)
2: entry = Retreive(state)
3: return arg max

action∈Actions
entry.visits[Apply(state, action)]

4: end function

19



3.3 Monte Carlo Tree Search

Like UBFM, Monte Carlo Tree Search is a best-first search method [21, 31].
However, instead of using evaluation functions to approximate the value of a
game state, the algorithm is guided by Monte Carlo simulations [59]. Based on
these approximated values, the algorithm gradually builds a tree by focusing
on the more promising parts of the search tree, using the current game state
as the root node of the search tree, as long as there is time left for search.
The algorithm consists of four phases: selection, play-out, expansion, and back-
propagation [15, 59]. After the search is completed, the final move needs to be
selected. The four phases are shown in Figure 3.3.

Figure 3.3: Four phases of Monte Carlo Tree Search (adapted from [15])

3.3.1 Selection

During the selection phase, the algorithm traverses down, starting in the root
node, until a not yet fully expanded node is explored. A node is deemed fully
expanded if it contains all child nodes.

The selection phase manages the balance between the exploitation of promis-
ing nodes seen during previous simulations and the exploration of less promising
nodes, which have yet to be visited often during these previous simulations [59].

Upper Confidence Bound

Various selection algorithms have been presented [7]. The most well-known
selection algorithm is based on the Upper Confidence Bound (UCB1) algorithm
[1], called Upper Confidence Bound applied to Trees (UCT) [31]. Child c of
node p with index i is selected that maximizes Equation 3.1

20



UCT =
wi
ni

+ C ×

√
ln(np)

ni
, (3.1)

where wi is the number of wins in node i for the player, ni is the number of
visits in node i and np is the number of visits in node p. C is a parameter
constant that controls the exploitation and exploration within the algorithm. A
lower value for C results in higher exploitation, while a higher value results in
higher exploration. This value needs to be tuned experimentally [59].

RAVE

By considering “all-moves-as-first” [10], the simulations can acquire faster re-
sults. For each given game position p, AMAF assigns each move a a value,
where each move is considered as important as the first move. For every simu-
lated game St played from a given game position p, in which move a has been
played, St(p, a) = 1 if the player who played move a won the simulated game and
0 if the player who played move a lost the simulated game. The AMAF value
is then the average over t, which allows AMAF to be computed incrementally
[59].

Rapid Action-Value Estimation (RAVE) [25] combines UCT with AMAF
values, aiming to increase the amount of information when the number of visits
at a node is small. RAVE has many different implementations for different
games [7]. For this thesis, the Ludii implementation has been used, where child
c of node p with index i is selected that maximizes Equation 3.2.

UCTGRAV E = (1− β) ∗ wi
ni

+ β ∗AMAFi + C ×

√
ln(np)

ni
, (3.2)

where the AMAF value of move a at node p are stored in child node i (AMAFi).
In Ludii the β is calculated as β(np, ni) =

np
np+ni+B∗np∗ni , where B is a bias

constant.
A problem of RAVE is that nodes close to the leaf nodes have a low visit

count, which results in not only less accurate AMAF values but also less accurate
UCTGRAV E values [53]. Generalized Rapid Action-Value Estimation [13] solved
this by using the AMAF value of its ancestor if the visit count is lower than a
given threshold, which does require more memory when being used. Since Ludii
only has a GRAVE implementation and often leads to similar or better results
[53], GRAVE has been used instead of RAVE.

Progressive Bias

Another proposed enhancement for the UCT formula (see Eq. 3.1) is called
Progressive Bias (PB) [15]. PB adds domain knowledge by using an evaluation
function. With PB, child c of node p with index i is selected that maximizes
Equation 3.3.

21



UCTPB =
wi
ni

+ C ×

√
ln(np)

ni
+

Hi

li + 1
, (3.3)

where Hi is the estimated value according to the evaluation function for node
i, and li is the number of losses for node i. As a result, nodes with many losses
are not biased for too long, while nodes with few losses remain biased.

Progressive History

A disadvantage of PB is that it requires an evaluation function [39]. Progressive
History [48] solves this by replacing Hi with a history score, which is often used
to order moves in αβ search [30]. With the history score, the assumption is
made that moves that are good in some game states are also good in other
game states. The number of games and the total scores for each move performed
during simulations are stored for each player (e.g., in a “from-to” table). Using
this information, the average score for a particular move of all simulated games
can be calculated, called the history score.

Both Progressive History and RAVE bias their moves based on their histor-
ical performance. However, while Progressive History stores the data for each
player separately in a global table, RAVE keeps track of the AMAF values in
each node. This means that Progressive History requires less memory since it
does not grow with the size of the tree (as RAVE does), but it also means that
its history heuristic is less accurate than RAVE’s history heuristic. To prevent
old data, the history table is cleared after a move is played in the actual game
[59].

3.3.2 Play-out

After a node that is not part of the tree yet has been selected, the play-out
phase starts. In this phase, simulations are used to determine an approximation
of the value of the game state. The moves during this play-out can be selected
according to different simulation strategies. Many simulation strategies exist
[59]. The strategies used in this thesis are discussed.

Simulation strategy

Most commonly, during the play-out phase, random moves (drawn uniformly
from all legal moves) are performed repeatedly until a terminal game state is
reached. Even though playing random moves does not reflect realistic game-of-
play, many simulations can be performed since it is computationally cheap. By
having many simulations, a reasonable approximation of the value of the game
state can be made.

Instead of taking random moves, the play-out can also be performed greedy
or ε-greedy, guided by an evaluation function. This will result in simulations
with a more realistic game of play.

22



However, this requires the addition of an evaluation function that increases
the time needed to perform the play-out. Another simulation strategy that
could be used is the Move-Average Sampling Technique (MAST) [2]. Like Pro-
gressive History, MAST assumes that moves good in one position are also good
in another. It keeps track of the average results of play-outs in which a cer-
tain move is played and stores this in the global memory. The implementation
used [55] selects the best history score in an epsilon-greedy fashion during the
simulations [59].

Early termination

However, by evaluating states using an evaluation function, the play-outs will
take considerably more time. Because of this, early termination can be used
to compensate for this. Two different techniques exist, fixed-depth early play-
out termination and dynamic early termination. Fixed-depth early termination
plays k moves when a leaf node has been reached. Dynamic early termination
periodically checks if the evaluation of the game state encountered during the
play-out exceeds a predefined threshold. If so, the play-out is terminated [33].

3.3.3 Expansion

A new node(s) is added to the tree during the expansion phase. Most commonly,
only the node selected during the selection phase, together with its value from
the play-out phase, is added.

3.3.4 Backpropagation

During this last phase, the results from the play-out are backpropagated through
the tree. Most commonly, each node keeps track of the sum of wins (i.e., wi)
and the number of visits (i.e., ni), as seen in Equation 3.1.

All nodes seen during the selection phase (including the selected node) are
updated. For all these nodes, the visit count is incremented by 1. In Ludii,
the win count increments by 1, 0, or -1 if the play-out phase results in a win,
draw, or loss for player τ , respectively. For a two-player game, the values
are propagated back in a negamax fashion [30]. This is called the Monte-Carlo
backpropagation. After backpropagating all values, the updated nodes can then
be used again during the selection phase.

Early termination

When early termination during play-out is used (as described in Subsection
3.3.2), the final state (win or loss) of the play-out may be unknown. Because of
this, the backpropagated value is handled differently.

For fixed-depth early termination, the value of the last game state of the play-
out, determined by the evaluation function, is backpropagated instead (scaled
between [−1, 1]). For dynamic early termination, 1 (a win) is backpropagated

23



if the evaluation value is above the threshold, and -1 (a loss) is backpropagated
if the evaluation value is below the negated threshold [33].

3.3.5 Final Move Selection

The four phases repeat until no time is left. After the search is completed,
the move used during the actual game needs to be selected. A few final move
selection strategies can determine the best child [15].

� Max child
The child with the highest win ratio (wini ).

� Robust child (similar to safest child)
The child with the highest number of visits (ni).

� Secure child
The child that maximizes a lower bound. For example, the child that
maximizes wi

ni
+ A

ni
, where A is a parameter (e.g. 4) [59]. Especially used

when MCTS-Solver (see Section 3.4) is enabled.

In this thesis the robust child will be used by default.

3.4 Monte Carlo Tree Search Solver

Even though MCTS, as described in Section 3.3, is unable to prove game theo-
retical values, it can converge to the game theoretical values because of the UCT
formula (see Eq. 3.1). Unfortunately, this does not work well in sudden-death
games (like Lines of Action), where the main line towards the win is narrow since
the MCTS does not converge fast enough to the game’s theoretical values. For
this reason, MCTS-Solver was proposed [61]. It modifies the backpropagation
and selection, which will be described in Subsection 3.4.1 and 3.4.2, respectively.

3.4.1 Backpropagation

Besides backpropagating the values {1, 0,−1}, MCTS-Solver additionally back-
propagates the game theoretical values (∞ for a win, and −∞ for a loss), based
on the player to move. If the parent node has a child with a proven win (game-
theoretical value of ∞), the parent node is a proven win as well. However, the
parent node is only a proven loss if all children are a proven loss.

3.4.2 Selection

When the parent node has a child with a proven win (game-theoretical value of
∞), no selection and play-out need to occur. When a parent node has one or
more children that are proven losses, the proven losses cannot simply be ignored
since it can result in over- and underestimation of the value of parent node [61].
Based on experiments in [61], the most effective selection is as follows: when

24



Eq. 3.1 is used, children with a loss will never be selected. However, when the
visit count of the node is below a threshold, moves are selected according to a
simulation strategy that allows proven losses to be selected. When a child is
selected with a proven loss, -1 (a “normal” loss) is backpropagated to the rest
of the tree.

3.5 MCTS using Implicit Minimax Backups

Many different suggestions have been made for all four phases of MCTS. Many
of them even combined minimax with MCTS. Some approaches use minimax
during the play-out phase [39, 60], while others even replace the play-out phase
(partially) [36, 52, 62]. In contrast, by using minimax during the play-out
phase, it can also be used during the other phases. Monte Carlo Tree Search
with heuristic evaluations using implicit minimax backups (MCTSimplicit) [33]
uses minimax of heuristic evaluations during the selection and backpropagation
phases. The other two phases stay the same as described in Section 3.3.

3.5.1 Selection

Instead of only using the win count wi and visit count ni, MCTSimplicit addition-
ally uses vτi , the implicit minimax evaluation with respect to player τ . This new
value at node i maintains a heuristic minimax value built from the evaluations
of subtrees below node i. Similar to UCT (Equation 3.1), the proposed selection
consists of an exploration and exploitation part (see Equation 3.4) while also
selecting the child c with index i of node p that maximizes the equation.

UCT IM = (1− α)
wi
ni

+ αvτi + C ×

√
ln(np)

ni
, (3.4)

where α is a parameter constant that weights the influence of the heuristic
minimax value.

Initially, when a node is expanded for the first time, the implicit minimax
value, vτi , is determined by performing a 1-ply minimax search.

3.5.2 Backpropagation

The win count wi and visit count ni are updated as described in Subsection 3.3.4.
Additionally, the implicit minimax value, vτi , is updated using the minimax
backup rule based on the children’s implicit minimax values. The complete
pseudocode of MCTSimplicit can be seen in Algorithm 7. Please note that the
terminal evaluation in line 22 of Algorithm 7 is always with respect to the same
player since it is being used on a two-player zero-sum game [33].

25



Algorithm 7 MCTS using implicit minimax backups

1: function Select(state) state Let A′ be a set of actions from the current
state maximizing Equation 3.4

2: return Random action from A′ . Selected uniformly
3: end function

4: function Update(state, reward)
5: wstate = wstate + reward
6: nstate = nstate + 1
7: vτstate = max

action∈Actions
vτApply(state, action)

8: end function

9: function Simulate(parent, parent action, state)
10: if some child of state not in tree then
11: expand(state)
12: for all actions in state do
13: child = Apply(state, action)
14: valuesτchild = evaluate(child) . Determine heuristic value
15: end for
16: vτstate = max

child∈Children
(valuesτchild) . 1-ply minimax back-up

17: reward = Playout(state)
18: Update(state, reward)
19: return reward
20: else
21: if state is terminal then
22: return evaluate(state) . Terminal evaluation
23: end if
24: action = select(state)
25: child = Apply(state, action)
26: reward = Simulate(state, action, child)
27: Update(state, reward)
28: return reward
29: end if
30: end function

31: function MCTSimplicit(state, maxTime)
32: startTime = time()
33: while time() - startTime < maxTime do
34: Simulate(-, -, state)
35: end while
36: return safest child . Child with the highest visit number
37: end function

26



Chapter 4

Deep Learning

Deep Learning (DL) is a subdiscipline of Machine Learning that is mainly based
on Artificial Neural Networks [44, 49], also known as Neural Networks (NNs).
In recent years, multiple successful suggestions using DL have been made to
improve the quality of search algorithms [18, 50]. This chapter describes the
basic DL techniques used for these search algorithms. Section 4.1 describes the
default NNs. In Section 4.2, a different class, better suitable for the spatial
domain, Convolutional Neural Networks (CNNs), are described. Lastly, Section
4.3 briefly discusses the training technique used to train the NNs for search
algorithms.

4.1 Neural Networks

Neural Networks are composed of nodes that are built in a layer-wise structure.
Directed weighted edges connect the nodes (also known as artificial neurons or
neurons). When all nodes of a layer are connected to all nodes of the next layer,

(a) Artificial Neural Network

(b) Linear regression visualized
using artificial neurons

Figure 4.1: Neural Networks

27



the layer is called fully connected. Each network consists of an input layer, one
or more hidden layers, and an output layer. See Figure 4.1a for an example of
a network with fully connected layers only. If a NN has multiple hidden layers,
it is called a Deep Neural Network (DNN).

Each node can be seen as its own linear regression model (see Figure 4.1b).
Equation 4.1 shows how the inputs ~x = {x1, x2, x3} determine the weighted sum
z based on the weights ~w = {w1, w2, w3} and bias node b.

z = w1x1 + w2x2 + w3x3 + b = ~wT~x+ b (4.1)

The weighted is also known as activation. A (usually non-linear) activation
function is used to determine the final output of the node y. For this thesis, two
different activation functions are used, Rectified Linear Unit (ReLU) [27], and
hyperbolic tangent (tanh) [34] (see Figure 4.2 for visualizations). By combining
multiple linear regression models in the NN, the network can express non-linear
functions, which can significantly improve the expressivity power (the ability to
approximate functions [37]) of the leaf evaluation function.

−4 −2 0 2 4
0

1

2

3

4

5
f(x) =max(0, x)

(a) ReLU

−4 −2 0 2 4

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

f(x) = tanh(x)

(b) tanh

Figure 4.2: Activation functions

4.2 Convolutional Neural Networks

Based on the represented problem, a different class of Artificial Neural Networks
needs to be used. One such class is CNN [24, 40]. CNNs are mainly used for
problems represented in the spatial domain, such as image classification [17].

An image consists of multiple pixels with a fixed width and height. In the
case of RGB images, all pixels contain three values. This means that images
can be represented using three matrices (called channels) with the same width
and height as the original image.

However, CNNs can also be used to evaluate game states. Instead of having
an image as input, a matrix is created with the same width and height as the
board. In this case, the channels represent the position of the pieces for both
players (see Figure 4.3). When each player only has one type of piece, only two
channels are needed (one for each player). However, when a single player has

28



multiple pieces (such as in chess), a distinct channel needs to be created for
every piece for each player. To use the spatial input in the NN, a convolutional
layer is needed, creating a CNN.

Figure 4.3: Conversion of the game state to CNN input

4.2.1 Convolutional Layer

During the forward pass of a convolutional layer, a filter with a predefined size is
shifted along the input matrix. The step size of this shift is called the stride. For
each step, the dot product between the filter and the input matrix is computed,
resulting in a two-dimensional matrix representing an activation map of the
filter used [26, 40]. This is called convolution. See Figure 4.4 for an example.

Figure 4.4: Convolution

Note that the size of the output matrix decreases in size after applying
convolution (see Figure 4.4). To prevent this problem, zeros can be added at
each side of the matrix, called zeros padding. When padding equals three,
additional zeros are added to the matrix three times. See Figure 4.5 for an
example.

29



Figure 4.5: Padding of three

As mentioned before, a single filter produces one single two-dimensional
activation map, regardless of the number of input channels [40]. Besides the
possibility of changing the stride and the size of the filter, the number of filters
used can also be changed. A new matrix with multiple channels is created as
output by stacking the activation maps of multiple filters.

4.3 Reinforcement Learning

The NNs used in search algorithms can be trained in different ways. When a
labeled dataset, e.g., games of experts, is available, the dataset can be used to
train the NN. This is called supervised learning. However, this network will
(most certainly) not exceed the expert level of play. To surpass this expert
level of play, the network can be trained using reinforcement learning, with a
technique called self-play [3].

In self-play, a search algorithm using a NN will play against itself while
updating its weights incrementally [18]. In chapter 5, the approach used in this
thesis to combine self-play and search is discussed.

Additionally, both methods can be combined by pre-training the NN using
supervised learning and proceeding with the training using self-play. There are
different ways to pre-train the network. DeepMind used games of experts [50],
while Cohen-Solal used terminal states [18]. However, a randomly initialized
network can also be used to start self-play.

30



Chapter 5

Combining Search
Algorithms and Deep
Reinforcement Learning

Successful attempts have been made to combine search with DRL (e.g., AlphaGo
[50]), as mentioned in Section 1.3. Many methods of these methods are based on
supervised learning or require much computational power. In [18] Cohen-Solal
compared various unsupervised DRL techniques that required less computa-
tional power, were able to be trained on less computational recourses while still
outperforming state-of-the-art methods. In [20], he referred to this framework
as the “descent framework”, named after the modified UBFM search algorithm
(see Subsection 3.2.2) called descent, which is designed to produce better data
for training. The descent framework is a combination of the association of multi-
ple building blocks: a search algorithm, an action selection algorithm, a terminal
evaluation function, and a procedure for selecting the data to be learned, which
are discussed in Sections 5.1 to 5.4, respectively. During training, the descent
framework uses experience replay to make the training more robust, which is
explained in Section 5.5. Section 5.6 explains how a combination of the building
blocks described can be used for training, together with the pseudocode of the
training algorithm. Lastly, Section 5.7 describes an enhancement of the search
algorithm, called the completion technique, to improve search and learning even
more.

5.1 Search Algorithm

By replacing the heuristic evaluation function of a search algorithm with a
NN, all search algorithms can be used to train the weights of a NN. However,
depending on the search algorithm, different data will be produced for training
(as explained in Section 5.4)

31



5.1.1 Descent Minimax

To produce even higher quality training data, in [18] Cohen-Solal designed a
modified UBFM search algorithm called descent minimax or, more succinctly,
descent. Descent combines UBFM with end-game simulations, providing values
close to the optimal game path, which can be used in the learning process
(according to the NN used). Similar to UBFM, descent selects the best child.
However, while UBFM only extends one leaf, descent recursively selects the
best child until a leaf node is reached, which can be seen as an MCTS play-out
guided by an evaluation function. When a terminal state is reached, the values
are updated in a minimax fashion. See Algorithm 8 for the pseudocode of the
descent algorithm. Descent makes use of the same methods as UBFM, which
are described in Subsection 3.2.2.

The terminal states are evaluated with a terminal heuristic (see Section 5.3).
The leaf nodes are evaluated using a NN, which can be batched together for
faster calculations. Similar to UBFM, both the terminal and leaf evaluations
of the descent search algorithm will be with respect to the first player since
the best action selects the children in a minimax fashion. Please note that in
[18] Cohen-Solal used the descent search algorithm for training and the UBFM
search algorithm for playing.

5.2 Action Selection

Similar to MCTS, the action selection of descent during the play-out (lines 20
and 24 of Algorithm 8) and final move selection (line 34 of Algorithm 8) can be
changed.

5.2.1 Action Selection during Play-out

Different action selection methods were proposed to be used during the play-out
in the descent framework: best child, ε-greedy, softmax distribution, and ordinal
distribution.

Best child

The most straightforward approach for the end-game simulations is to select the
child with the best-estimated value, similar to UBFM (see Subsection 3.2.2).

ε-greedy

However, to encourage exploration, ε-greedy can also be used in descent (see
Subsection 3.2.2).

Softmax distribution

A disadvantage of ε-greedy is that it does not differentiate the action in terms
of probabilities (except for the best action) [18]. Because of that, another dis-

32



Algorithm 8 Descent Minimax search algorithm

1: function descent iteration(state, TT, first player)
2: if state is terminal then
3: value = evaluate(state) . Terminal evaluation
4: store(state, value) . Store the information in the TT
5: return value
6: else
7: if state not in TT then
8: for all actions in state do
9: child = Apply(state, action)

10: if child is terminal then
11: values[child] = evaluate(state) . Terminal evaluation
12: store(child, values[child])
13: else
14: values[child] = evaluate(child) . Leaf evaluation
15: end if
16: end for
17: store(state, values)
18: end if
19: entry = Retreive(state) . Retreive the information from the TT
20: action = select action(state, entry, first player)
21: child = Apply(state, action)
22: values[child] = descent iteration(child, TT)
23: store(state, values)
24: action = select action(state, entry, first player)
25: child = Apply(state, action)
26: return values[child]
27: end if
28: end function

29: function Descent(state, maxTime, firstPlayer)
30: startTime = time()
31: while time() - startTime < maxTime do
32: descent iteration(state, TT, first player)
33: end while
34: return final move selection(state, TT, first player)
35: end function

33



tribution is often used, the softmax distribution [5]. It creates a probability for
each action, where the best value has the highest probability of being selected
(see Eq. 5.1).

P (vτ ) =
ev
τ
i∑N

j=1 e
vτj
, (5.1)

where N is the number of children in state s, i ∈ {0, 1, . . . , N − 1}, vτi is the
estimated value of the state after playing action ai in state s, and P (vτ )i is the
probability of selecting action ai.

Ordinal distribution

In [18], Cohen-Solal proposed an alternative distribution that does not depend
on the values (like softmax), but on the order of the values, see Eq. 5.2.

P (ci) = (ε′ +
ε

N − i
) · (1−

j<i∑
j=0

P (cj)), (5.2)

where N is the number of children in state s, i ∈ {0, 1, . . . , N − 1}, ci is the i-th
best child of the state, ε is the exploration constant, and ε′ is the exploitation
constant (1− ε).

Even though the softmax and ordinal distribution can differentiate the ac-
tions in terms of probability, Cohen-Solal mentioned that ε-greedy performed
best [18]. Because of this, similar to [18], ε-greedy is used by default in this
thesis.

5.2.2 Final Move Selection

Similar to UBFM, the descent algorithm can select the best child or safest child
during the final move selection (see Subsection 3.2.2). The safest child is used
by default in this thesis.

5.3 Terminal Evaluation

In the descent search algorithm, non-terminal nodes are evaluated using a NN. A
different evaluation function must be used when a terminal state is encountered
(in either the selection or play-out). As mentioned in Subsection 3.2.1, the most
common score, +1 if player one wins, 0 for a draw, and -1 if player two wins, is
used. This is used by default in this thesis.

However, in [18], Cohen-Solal also proposed different terminal evaluation
functions called reinforcement heuristics. The reinforcement heuristics allows
the reinforcement process to use general or dedicated knowledge. The best-
proposed reinforcement heuristics are the additive depth heuristic (Subsection
5.3.1) and the score heuristic (5.3.2).

34



5.3.1 Additive Depth Heuristic

The additive depth heuristic considers how many moves it takes to reach a
terminal game state. The heuristic returns l if player one wins and −l if player
two wins, with l = P − p+ 1, where P is the maximum number of moves, and
p is the number of moves played. By using this heuristic, the search algorithm
prefers to win as quickly as possible while postponing losses. This heuristic
hypothesizes that a state close to the end of the game has a more accurate value
than a state further away and that the game’s duration is easy to learn. Under
this assumption, the search takes less risk with this heuristic to try to win as
soon as possible and lose as late as possible. If P is unknown, l can be calculated
by using the estimated maximum number of moves, P̃ , with l = max(1, P̃ − p).

5.3.2 Score heuristic

As in other works, a natural reinforcement heuristic can be used to add addi-
tional information to the terminal evaluation function [41]. This is called the
score heuristic. For example, in Othello, the goal is to have more pieces than
the opponent at the end of the game. The score heuristic is the number of
own pieces minus the number of pieces of the opponent. Please note, that this
heuristic is not possible for games where no natural score heuristic exists (such
as Breakthrough). By using the score heuristic, the NN will learn to contain
more information than just an approximation of the state since it will instead
contain an approximation of the scores of states.

5.4 Data Selection for Learning

A set of pairs consisting of states (inputs) and values (outputs) are required to
train the weights of a NN. These pairs can be generated using the search tree
from a search algorithm that plays games against itself.

For example, see Figure 5.1, in which the descent algorithm plays a short
game against itself. For each ply, the descent algorithm has enough time to
perform two non-deterministic play-outs (ε-greedy, indicated by the bold solid
lines), after which the best child is selected (indicated with the red line). The
leaf nodes of each parent are indicated with a dashed line, while the interior
nodes and terminal nodes are indicated with a solid line. A grey color indicates
the previously explored nodes that cannot be reached anymore. For readability,
the score of each node (game state) is an integer between [−10, 10], where 10, 0,
and -10 are a win, draw, and loss for player one, respectively. Similar to Figure
3.1, the maximizing player (player one) is indicated by a square, while a circle
indicates the minimizing player (player two).

35



(a) Ply one

(b) Ply two

(c) Ply three

Figure 5.1: Search tree of the descent search algorithm playing a game against
itself until a proven win for the first player is found

The search tree made by the search algorithm is used to generate a dataset.
It is worth noting that if a different search algorithm is used, the resulting
search will be different, which in turn means that the generated dataset will be
different as well.

In [18] Cohen-Solal proposed three different data selection strategies to cre-

36



ate a set of pairs from such search trees, which he called terminal learning,
root learning, and tree learning. Reported results showed that tree learning
outperformed the other learning strategies in most games.

For training, the values of the pairs need to be with respect to the same
player (player one, as seen in Figure 5.1). This allows a NN to create an eval-
uation function for this player without any modifications to the architecture
of the network. The evaluation value of the other player can be calculated by
multiplying the outputted value of player one by -1.

5.4.1 Terminal Learning

In AlphaGo, the set of pairs used during the learning phase is D = {(s, o) | s ∈
R}, where R is the set of states of the sequence of the actual game, and o is
the final outcome of the game (e.g., {1, 0,−1}) [50], see Figure 5.2 (the selected
nodes are indicated by the green color, together with the target value). In [18],
this approach is called terminal learning. It focuses on learning the value of the
terminal state for the sequence of the actual states of the game. That is why all
selected nodes (green nodes) contain the same (terminal) value in Figure 5.2.

Figure 5.2: Terminal learning

5.4.2 Root Learning

The set of pairs used during the learning phase of root learning is D = {(s, v) |
s ∈ R}, where v is the backpropagated value of state s in the search tree. Since
the backpropagated value is used, the selected nodes (indicated in green) can
contain different values (see Figure 5.3). By using the backpropagated values
as targets, the NN learns the value of the search tree instead. In other words,
the network will learn the value it finds after searching.

37



Figure 5.3: Root learning

5.4.3 Tree Learning

Using only the sequence of states of the actual game will result in a set with a
relatively small number of pairs since much information used to decide the action
to play is discarded, as seen in Figures 5.2 and 5.3. By including the explored
game states of the search algorithm, more information can be used for training.
The set of pairs used during the learning phase is D = {(s, v) | s ∈ T}, where T
is the set of states of the partial game tree of the game (all states encountered
during search), excluding the non-terminal leaf nodes (see Figure 5.4). This
approach is called tree learning since it uses (almost) all values of the search
tree as targets. Like root learning, tree learning learns the backpropagated
values (see Figure 5.4).

Instead of only using the states selected during the actual game, significantly
more pairs are used for training when all encountered game states of the search
tree are used, as seen in Figure 5.4. Since tree learning generates significantly
more pairs, it gives the advantage of not having to run games in parallel (as
done in AlphaZero [51]) since enough data is created [20].

5.5 Experience Replay

Using all data of a single game during the update of the weights of the NN can
result in unstable training because of the autocorrelation between the iterations.
For this reason, the descent framework uses a replay memory technique called
experience replay [35].

Contrary to using all data of a single game, experience replay stores multiple
games into a replay memory. It then samples from the replay memory to create
a minibatch of experience, used for updating the weights of the network. This

38



Figure 5.4: Tree learning

tackles the problem of autocorrelation leading to unstable training by making
the problem more like a supervised learning problem which results in faster-
converging NNs [35].

In [18], the size of the replay memory used is fixed. This means that only
a fixed number of pairs (see Section 5.4) can be stored. However, the number
of pairs created in each game can differ much based on the game played, the
time given to determine a move, the search algorithm used, the system used,
the randomness, etc. This means that in some cases, many previous games
are stored in the replay memory, while in other cases, not even a full game is,
making it hard to find a suitable size. Thus, in this thesis, the size of the replay
memory is based on the number of games (e.g., storing the last three games).
See Algorithm 9 for the pseudocode of this replay memory technique.

If the replay memory D contains more games than the maximum number
of games, experience replay(D) starts by removing the data from the old
game in the replay memory. It then samples from the replay memory to create
a minibatch of experience d, which can be used for training. Contrary to the
work of Cohen-Solal [18], the size of this minibatch is dynamic as well since it
is based on a percentage of the replay memory (e.g., 4%).

Algorithm 9 Experience replay

1: function experience replay(D)
2: if number of games in D > maximum number of games then
3: D = remove old game(D)
4: end if
5: d = UNIFORM(D)
6: return D, d
7: end function

39



5.6 Training the Neural Network

By creating a combination of the building blocks, the NN can be trained into a
value network by playing games against itself and updating the weights incre-
mentally, which is depicted in Algorithm 10.

Algorithm 10 Descent framework

1: function Training()
2: D = ∅
3: TT = ∅ . Transposition table
4: while time left do
5: s = initial game state()
6: while state not terminal do
7: TT = Search(TT) . Self-play
8: a = final move selection(TT, s)
9: D = add new data(TT, s) . Add data based on data selection

10: s = apply(s, a)
11: end while
12: D = add terminal data(TT)
13: D, d = experience replay(D)
14: update network(d)
15: end while
16: end function

When the training starts, an empty dataset that can be seen as replay mem-
ory and a transposition table to keep track of the explored states during the
search are created. As long as there is time left for training, a new game is
created. The search algorithm used (see Section 5.1) plays one single game
against itself. Each ply, before the actual move is performed (see Section 5.2),
the stored data in the transposition table during the search is added to the
replay memory D based on the data selection method used (see Section 5.4).
The final (terminal) state is added to D when a terminal state is reached. This
is followed by applying experience replay (see Section 5.5), where a minibatch
of experience is created (d). This minibatch of experience is used to update the
weights of the NN.

Please note that the descent framework only trains a value network (a neural
network that estimates the values belonging to a given state), while AlphaGo
Zero and Polygames train both a value network and a policy network (a neural
network that indicates the probability of playing a move given a state) [14, 52].

5.7 Completion

Relying solely on leaf and terminal evaluation during the search can lead to
incorrect outcomes, especially when an outcome of a leaf evaluation function
can exceed the outcome of terminal evaluation (such as reinforcement heuristics,

40



see Section 5.3). For example, when state s is preferred over state s′, based on
the estimated value, even though s′ is resolved state (a state with proven win
or loss). Choosing s over s′ is an error since the guarantee of winning can be
lost. See Figure 5.5a for an example in which the guaranteed win is given away.

(a) Without using completion (b) When using completion

Figure 5.5: Preventing stepping away from the guaranteed win, by using com-
pletion (inspired by [18])

In [18] Cohen-Solal proposed a “solver” technique (similar to MCTS-Solver,
see Section 3.4) that takes this into account [19]). The so-called completion
technique consists of the combination of a completion value c(s) and a resolution
value r(s) for each state s. The completion value, c(s), of a leaf node, is 1 when
the leaf node is terminal and a win for player one, -1 when the leaf node is
terminal and a win for player two, or 0 when the leaf node is a draw or non-
terminal. For non-leaf nodes, the completion value is calculated in a minimax
fashion. The resolution value, r(s), of a leaf node is 1 if it is terminal and 0
if not. For non-leaf nodes, the resolution value is 1 if |c(s)| = 1, and is the
minimum resolution value of the children otherwise.

Instead of only using the estimated value of the state, v(s), in the mini-
max framework, states are compared based on the lexical order of the pairs
of (c(s), v(s)) (see Figure 5.5b). Using the resolution of states during the fi-
nal move selection reduces the duration of games since actions with guaranteed
wins are played, and therefore, a priori the duration of the learning [18]. See
the pseudocode of an iteration for the completed descent and UBFM algorithm
in Algorithm 11 and Algorithm 12, respectively, together with the pseudocode
of both search algorithms in Algorithm 13, and the methods used in these Al-
gorithms in Algorithm 14

Additionally, to encourage more exploration, completed ε-greedy can be used
during the selection and play-out. In this approach, the best move is selected
with probability (1− ε), and a random move with the same completion value as
the best move is selected with probability ε. This has been used by default in
this thesis.

41



Algorithm 11 Iteration of the completed descent search algorithm

1: function completed descent iteration(state, TT, first player)
2: if state is terminal then
3: resolution = 1
4: completion = classic terminal(state)
5: value = evaluate(state)
6: store(state, resolution, completion, value) . Store the information

in the TT
7: else
8: if state not in TT then
9: for all actions in state do

10: child = Apply(state, action)
11: if child is terminal then
12: resolutions[child] = 1
13: completions[child] = classic terminal(child)
14: values[child] = evaluate(child)
15: store(state, values[child])
16: else
17: values[child] = evaluate(child) . Leaf evaluation
18: end if
19: end for
20: entry = store(state, resolutions, completions, values)
21: action = completed best action(state, entry, first player)
22: child = Apply(state, action)
23: completion, value = completions[child], values[child]
24: resolution = backup resolution(state, entry)
25: store(state, resolution, completion, value)
26: end if
27: if state is unresolved then
28: entry = Retreive(state)
29: actions = unresolved actions(entry)
30: action = completed best action dual(state, entry, actions,

first player) . Update visits
31: values[child] = completed descent iteration(child, TT)
32: entry = Retreive(state) . Updated values after iteration
33: action = completed best action(state, entry, first player)
34: completion, value = completions[child], values[child]
35: resolution = backup resolution(state, entry)
36: end if
37: end if
38: return value
39: end function

42



Algorithm 12 Iteration of the completed UBFM search algorithm

1: function completed ubfm iteration(state, TT, first player)
2: if state is terminal then
3: resolution = 1
4: completion = classic terminal(state)
5: value = evaluate(state)
6: store(state, resolution, completion, value) . Store the information

in the TT
7: else
8: if state is unresolved then
9: if state not in TT then

10: for all actions in state do
11: child = Apply(state, action)
12: if child is terminal then
13: resolutions[child] = 1
14: completions[child] = classic terminal(child)
15: values[child] = evaluate(child)
16: store(state, values[child])
17: else
18: values[child] = evaluate(child) . Leaf evaluation
19: end if
20: end for
21: entry = store(state, resolutions, completions, values)
22: else
23: entry = Retreive(state)
24: actions = unresolved action(entry)
25: action = completed best action dual(state, entry, ac-

tions, first player) . Update
visits

26: values[child] = completed ubfm iteration(child, TT)
27: entry = store(state, resolutions, completions, values)
28: end if
29: action = completed best action(state, entry, first player)
30: child = Apply(state, action)
31: completion, value = completions[child], values[child]
32: resolution = backup resolution(state, entry)
33: store(state, resolution, completion, value)
34: else
35: entry = Retreive(state)
36: value = entry.value
37: end if
38: end if
39: return value
40: end function

43



Algorithm 13 Completed descent and UBFM search algorithm

1: function completed descent(state, maxTime, firstPlayer)
2: startTime = time()
3: while time() - startTime < maxTime do
4: completed descent iteration(state, TT, first player)
5: end while
6: return completed safest move selection(state, TT, first player)
7: end function

8: function completed ubfm(state, maxTime, firstPlayer)
9: startTime = time()

10: while time() - startTime < maxTime do
11: completed ubfm iteration(state, TT, first player)
12: end while
13: return completed safest move selection(state, TT, first player)
14: end function

44



Algorithm 14 Definitions of methods used in Algorithm 11 and 12

1: function completed best action(state, entry, first player)
2: if first player then

3: return arg max
action∈Actions

( entry.completions[Apply(state, action)],
entry.values[Apply(state, action)],
entry.visits[Apply(state, action)]

)
4: else

5: return arg min
action∈Actions

( entry.completions[Apply(state, action)],
entry.values[Apply(state, action)],
-entry.visits[Apply(state, action)]

)
6: end if
7: end function

8: function completed best action dual(state, entry, actions,
first player)

9: if first player then

10: return arg max
action∈actions

(
entry.completions[Apply(state, action)],
entry.values[Apply(state, action)],
-entry.visits[Apply(state, action)]

)
11: else

12: return arg min
action∈Actions

( entry.completions[Apply(state, action)],
entry.values[Apply(state, action)],
entry.visits[Apply(state, action)]

)
13: end if
14: end function

15: function backup resolution(state, entry)
16: if |entry.completion| = 1 then
17: return 1
18: else
19: return min

action∈Actions
(entry.resolutions[Apply(state, action)])

20: end if
21: end function

22: function completed safest move selection(state, entry, first player)
23: if first player then

24: return arg max
action∈Actions

( entry.completions[Apply(state, action)],
entry.visits[Apply(state, action)],
entry.values[Apply(state, action)]]

)
25: else

26: return arg min
action∈Actions

(
entry.completions[Apply(state, action)],
-entry.visits[Apply(state, action)],
entry.values[Apply(state, action)]]

)
27: end if
28: end function

45



Chapter 6

Monte Carlo Tree Search
using Network-based
Implicit Minimax

As described in Section 3.3, MCTSimplicit can improve the performance of MCTS
by using an evaluation function during selection and play-out. Instead of using
a heuristic evaluation function, it is also possible to replace this with a NN.
As mentioned in Section 3.2, using a NN is computationally more expensive
than using a heuristic evaluation function. Therefore, changes have to be made
to the MCTS architecture, as seen in AlphaGo [50]. Many variants have been
suggested to create a working MCTS architecture that works with the high
computation time of NNs. Changes have been made to the selection, play-
out, and backpropagation phase, which are discussed in Sections 6.1, 6.2 and
6.3, respectively (all the other suggested variants are discussed in Section 7.5).
The architecture described in this chapter, MCTS using Network-based Implicit
Minimax, is denoted as MCTSNIM. An additional MCTS architecture for future
work is discussed in Section 6.4. Besides using MCTSimplicit for game-playing,
it could also be used during training, as discussed in Section 6.5.

6.1 Selection

As discussed in Section 3.3 and 3.5, many MCTS algorithms changed and en-
hanced their UCT selection function to improve their performance. Two of
these models are AlphaGo Zero, and Polygames [14, 52], which changed their
UCT function to be more suitable when using a neural network (see Eq. 6.1
and 6.2, respectively).

UCTAlphaZero =
wi
ni

+ Pi ×
1

1 + ni
, and (6.1)

46



UCTPolygames =
wi
ni

+ Pi ×
np
ni
, (6.2)

where Pi is the probability value from the policy network from the move from
parent node p to child node i.

This thesis proposes improvements to the original implicit UCT function
(Eq. 3.4) used in the MCTSNIM algorithm. Three variations of the implicit
UCT function, each with enhancements to either the exploration, exploitation
or both are proposed. The modifications are discussed in Subsections 6.1.1 and
6.1.2 for the exploration and exploitation, respectively.

6.1.1 Exploration

While UCT IM (see Eq. 3.4)) uses a fixed constant to scale the exploration,
both AlphaGo Zero and Polygames use policy networks to scale the exploration
instead. Since the descent framework only generates a value network (as men-
tioned in Section 5.6), a policy network cannot be added to UCT IM when using
the descent framework.

However, since all children are calculated during the one-ply search of
MCTSimplicit, something similar can be achieved by using a softmax function
(see Eq. 5.1) to convert the estimated values and implicit minimax values of the
children into probabilities and use these probabilities to scale the exploration.
To encourage exploration even more, a temperature can be added to the soft-
max, which makes the probabilities more equal in the beginning while making
them more different when the number of visits increases (see Eq. 6.3).

P (vτ ,T) =
ev
τ
i /T∑N

j=1 e
vτj /T

, (6.3)

where N is the number of children in state s, i ∈ {0, 1, . . . , N − 1}, vτi is the
estimated value of the state after playing action ai in state s, T is the temper-
ature, and P (vτ )i is the probability of selecting action ai. The substitution of
the exploration constant C in Eq. 3.4 with the softmax function that includes
a temperature (as defined in equation 6.3) results in an enhanced implicit UCT
function equation, as shown in Eq. 6.4.

UCT exploration = (1− α)
wi
ni

+ αvτi + P (vτ ,
C

np
)i ×

√
ln(np)

nc
, (6.4)

where P (vτ , Cnp )i is the softmax value with temperature C
np

of child i based on

the estimated values of all children vτ

6.1.2 Exploitation

MCTSimplicit uses a fixed α value during search (see Eq. 3.4). This means that
the search algorithm is not able to differentiate between good and bad estimates

47



of the MCTS score (wini ). This is solved by using the number of visits of a node
and decreasing the α value linearly over time, such that in the beginning, UCT
is more dependent on the implicit minimax value, while later on, the UCT is
more (or fully) dependent on the MCTS score (see Eq. 6.5).

ai = max (αmin, αinit − sniαinit) , (6.5)

where αinit is the initial influence of the estimated values, αmin is the minimum
bound of influence of the estimated values, and s is the slope used to decrease
α.

Combining this enhancement with the original implicit UCT function (Eq.
3.4) results in a second enhanced implicit UCT function, as shown in Eq. 6.6.

UCT alpha = (1− αi)
wi
ni

+ αiv
τ
i + C ×

√
ln(np)

ni
, (6.6)

where αi is the influence of the estimated value calculated by Eq. 6.5. The
exploitation and exploration enhancements can also be combined to create a
third enhanced version of the implicit UCT function. This new equation is
shown in Eq. 6.7.

UCT combined = (1− αi)
wi
ni

+ αiv
τ
i + P (vτ ,

C

np
)i ×

√
ln(np)

nc
, (6.7)

6.2 Play-out

When using a greedy or ε-greedy play-out, most of the evaluations, so also
computations when using NN, take place during the play-out phase of the MCTS
algorithm. Hence most commonly, modifications are made to the play-out phase
[18, 20, 51, 52]. After trying multiple variants (see Section 7.5), as also shown
in previous research [52], performing no play-out results in good-performing
MCTS search algorithms when using a NN. Therefore, no play-out is performed
in this architecture. Rather than selecting the first node encountered during
play-out for expansion, the modification involves selecting the best-performing
child, determined by the UCT selection function, to expand (as done by the
MCTS implementation of Ludii [9, 8, 42]).

6.3 Backpropagation

Since, most often, a non-terminal game position is selected during the selection
phase, and no play-out is performed, it is not always possible to backpropagate
a win or a loss. Because of this, similar to fixed-depth early termination (as
seen in Subsection 3.3.4), an estimated value is backpropagated instead (scaled
between [−1, 1]). AlphaGo Zero and Polygames backpropagate the estimated

48



value of the neural network for the expanded game position [14, 52]. This will
also be used by MCTSNIM.

Figure 6.1 depicts a visualization of the modified architecture of MCTSNIM.
Specifically, the figure shows the original selection phase, the use of no play-out,
the addition of the implicit minimax method when adding a new node, and the
backpropagation of both the implicit minimax value and the estimated value of
the expanded node.

Figure 6.1: Three phases of MCTSNIM (adapted from [15])

6.4 Proof of Concept

The MCTSimplicit algorithm in [33] uses heuristic ε-greedy play-outs with dy-
namic early termination. However, since this play-out is computationally too
expensive when using a NN, no play-out is performed in the proposed MCTSNIM

architecture (see Sections 6.1 till 6.3). Nevertheless, it is also possible to per-
form play-outs with a smaller policy network, as done in AlphaGo [50]. Because
of the limited time, training a second policy network was not possible. There-
fore a proof of concept has been made for a second architecture, denoted as
MCTSPOC.

This is achieved by using the neural network as an evaluation function for
the selection phase (as done in Section 6.1) while using Maarten Schadd’s evalu-
ation function (as described in Subsection 3.2.1) for the ε-greedy play-outs with
dynamic early termination. As opposed to the proposed MCTSNIM architec-
ture, it turned out that this architecture performed better with a fixed α value
(see Appendix C). Therefore, MCTSPOC uses Eq. 6.4 by default.

49



6.5 Training with MCTSimplicit

Descent and MCTSimplicit have much in common. Both search algorithms have
a selection phase, an expansion phase, a play-out phase, and a minimax back-
propagation. During training, descent only gets guided by the minimax back-
ups. It ignores the move that wins the most as long as it does not have the
highest estimated value. This can be a problem when you have a move that is
slightly better than another move, according to the evaluation, while it results
in more losses. MCTSimplicit solves this problem by also using the backpropa-
gated estimated values during selection. This could result in faster converging
and better-performing NNs, since more informed decisions could be made. Be-
cause of this, four different MCTSimplicit implementations have been made for
training.

The first MCTSimplicit implementation was developed to be as similar to
completed descent as possible. It uses the original implicit UCT function (Eq.
3.4) and an ε-greedy approach for play-outs guided by a neural network. The
child with the most visits is selected for play, while all terminal and non-leaf
game states are added to the training data.

The second MCTSimplicit implementation is more similar to completed
UBFM, as it does not use play-outs. Instead, the backpropagated value is
an estimated value of the expanded game position. Everything else remains the
same as in the first implementation.

Additionally, using a trained network by MCTSNIM itself could potentially
also increase its performance since the network learns to predict the values
found after searching with MCTSNIM more specifically. Therefore, for the third
and fourth implementations, the enhanced implicit UCT function (Eq. 6.7) is
used instead of the original implicit UCT function. Both implementations are
otherwise similar to the first and second implementations, respectively.

50



Chapter 7

Experiments

Several experiments have been performed to test the performance of the
MCTSNIM algorithm while using a NN trained with the completed descent
search algorithm. First, the experiments and the setup of the experiments
are described in Section 7.1. This is followed by Section 7.2, which explains
the implementation details, and Section 7.3, which discusses the parameter se-
lection for the implemented search algorithms. Section 7.4 shows the results
of the performed experiments against the benchmark models, but also against
the state-of-the-art completed UBFM algorithm. Section 7.5 discusses the addi-
tional variants that have been suggested to create the proposed architecture (as
seen in Chapter 6), and Section 7.6 describes and shows the results of the ex-
periments when using a NN trained with MCTSimplicit (as described in Section
6.5) instead of completed descent. Finally, Section 7.7 shows the results of the
experiments on the proof of concept architecture for future work (see Section
6.4).

7.1 Setup

To test the performance of MCTSNIM, the search algorithm with its enhance-
ments will be compared against the two benchmark models discussed in Subsec-
tion 7.1.1, while the CNN as shown in Subsection 7.1.2 is used by MCTSNIM.
For the first experiments, the CNN is trained by the completed descent search
algorithm described in Subsection 7.1.3. The hardware used for training and
the experiments is described in Subsection 7.1.4.

7.1.1 Benchmark Models

The Ludii framework [9, 42] offers several implemented search algorithms in-
cluded with heuristic evaluation functions. For this thesis, two Ludii implemen-
tations have been selected as benchmark algorithms.

The first algorithm is αβ search, with move-ordering, iterative deepening,

51



and transposition tables (denoted as αβbench). The heuristic evaluation used is
the evaluation function fine-tuned by the Ludii team (as shown in Subsection
3.2.1).

For the second algorithm, an MCTS implementation was used. To select the
best MCTS implementation, several parallelized MCTS implementations (with
6 threads) have been compared to a non-parallelized MCTS implementation
with Eq. 3.1 for selection, random play-outs, and Monte-Carlo backpropaga-
tions (denoted as MCTSdefault) in 100 games of Breakthrough. The Progressive
Bias implementations use Maarten Schadd’s evaluation function (as described
in Section 3.2.1). Table 7.1 shows the performance of the tested MCTS imple-
mentations with a confidence interval of 95%. Please note that the confidence
interval can only be calculated if there are more than four wins [29]. MCTS with
Progressive Bias and MAST is the best-performing tested MCTS algorithm in
Breakthrough. Because of this, MCTS with Progressive Bias and MAST will
be used as the second benchmark model (denoted as MCTSbench).

Bot 2
Bot 1 MCTSdefault

MCTS ProgressiveBiasGRAVE MAST 88.0 ±6.4
MCTS ProgressiveBias MAST 98.0
MCTS ProgressiveHistoryGRAVE MAST 46.0 ±9.8
MCTS UCB1GRAVE MAST 74.0 ±8.6
MCTS UCB1GRAVE Random 24.0 ±8.4
MCTS UCB1 MAST 96.0
MCTS UCB1 Random 83.0 ±7.4

Table 7.1: Win percentage of several parallelized MCTS implementations with
different enhancements against MCTSdefault for 100 games of Breakthrough

7.1.2 CNN Architecture

The architecture used is similar to the CNN architecture used by Cohen-Solal
[18]. The following abbreviations, inspired by [23], are used to describe this
CNN architecture:

� Zero Padding Layer: Z-(size of padded rows and columns)

� Convolutional Layer: C-(number of filters)-(size of the filters)-(stride)-
(activation function)

� Fully Connected Layer: F-(number of nodes)-(activation function)

� ReLU: R

� Hyperbolic tangent (tanh): T

The architecture, as shown in Figure 7.1, is structured as follows: Z-1 →
C-64-3-1-R → C-64-3-1-R → C-64-3-1-R → F-100-R → F-1-T.

52



Please note that in [18], the final activation function of the NN got changed
when using the reinforcement heuristics. However, as done in this thesis, the
architecture of the CNN stays unchanged since the reinforcement heuristics get
scaled between [−1, 1] instead.

2 10

64 8

64 6

100

1

Figure 7.1: CNN architecture

7.1.3 Training of Neural Network with Descent

To speed up training, the shown CNN is first pre-trained on one million ran-
dom terminal game states, after which the CNN is trained by using the descent
framework. It uses the completed descent search algorithm with ε-greedy explo-
ration policy (ε = 0.05), the safest selection policy combined with tree learning,
and the classic evaluation function. The descent algorithm gets 1 second per
move to collect the data, resulting in approximately 1000 games per day when
also updating the NNs. Data augmentation has been performed by mirroring
the game positions horizontally. Instead of using the experience replay with a
specified number of data pairs, an experience replay that is based on the last
3 games with a sampling rate of 0.04 has been used (see Section 5.5) since it
performed better than other amounts of games after 12 hours of training (see
Appendix A). Cohen-Solal trained his network for 30 days [20]. However, due
to the time constraints of this thesis, the network used for the experiments will
be trained for 36 hours only (unless otherwise stated).

7.1.4 Computational Specifications

The following hardware has been used for the performed training and experi-
ments: two GPUs, both NVIDIA RTX A5000, CPU AMD EPYC 7453 28-Core,
and 251GB RAM on RedHat. The code is implemented in Java (version 19),
using DeepLearning4J (version 1.0.0-M2.1) with CUDA for the Deep Learning
implementations.

53



7.2 Implementation Details

Several decisions have been made to increase the performance or optimize the
code for completed UBFM, completed descent, MCTSNIM, and MCTSPOC,
which are described in this section.

7.2.1 Completed UBFM and Completed Descent

Similar to [18], for completed UBFM and completed descent, an ε-greedy ex-
ploration policy (ε = 0.05) has been used during the search, while the selection
policy of the final move is based on the safest child. On top of that, all children
of a node are evaluated by the network in a single batch. Instead of iterating
through all children to select the best one, a sorted list has been used. When a
new value is found, the respective child will be repositioned in this list. Lastly,
contrary to [18], the explored search tree is reused. This is done by only deleting
the game states in the transposition table which have not been seen during the
last three searches.

7.2.2 MCTSNIM

Like UBFM and descent, MCTSNIM reuses its tree for the next search while
also evaluating multiple children batched. To increase the number of iterations,
tree parallelization [16] has been used. Since multiple threads have been used,
each thread received its own neural network for evaluations. When a child is
not yet expanded, the initial MCTS score (wini ) is set to the MCTS score of the
parent. Since multiple threads are used, a virtual loss (of 1) is added to this
score for each entered thread [16]. The used implicit UCT function, together
with the selected parameters, are discussed in Subsection 7.4.1.

7.2.3 MCTSPOC

MCTSPOC is implemented similarly to MCTSNIM, where the only difference
is the play-out and backpropagations phase as discussed in Section 6.4. The
heuristic ε-greedy play-outs with dynamic early termination used a threshold of
0.4 as in [33].

7.3 Parameter Selection

As seen in [20] and [33], the parameters used in the UCT function can signifi-
cantly impact the performance of an MCTS algorithm. Therefore, the param-
eters used by MCTSNIM need to be adjusted precisely. On top of that, the
number of threads used for the parallelized MCTS algorithm also needs to be
tuned.

In the most optimal situation, the parameters used by MCTSNIM would be
tuned using an optimization technique in combination with a large number of
games (to prevent large confidence intervals) for each suggested implicit UCT

54



function individually. However, only a limited amount of time is available to
tune the parameters, which results in a limited amount of parameters to try.
Therefore, 100 games against αβbench are run for each parameter only. Since an
optimization method requires too much time, the parameters are hand-tuned
with an approach inspired by Powell Search [43]. Only the parameters of Eq.
6.7 are tuned. The parameters of Eqs. 6.4 and 6.6 are chosen by using a
combination of the parameters selected for Eq. 3.4 (see Appendix B and Eq.
6.7. To give an insight into the confidence intervals, all visualizations concerning
the parameter tuning of a UCT function in this thesis (including the Appendix)
are included with a 95% confidence interval.

7.3.1 Number of Threads

Both MCTSbench, MCTSNIM, and MCTSPOC are using multiple threads to in-
crease the number of iterations. However, because of the synchronization (to
prevent race conditions) and the parallelization overhead, adding more threads
does not result in more iterations indefinitely. Because of this, the number of
threads needs to be tuned to optimize the number of iterations. This is achieved
by performing a single search (of 1 second) 100 times on the initial board posi-
tion of Breakthrough (as seen in Figure 2.1a) without reusing the tree. Figure
7.2 shows the average iterations/second achieved by the search algorithms over
these 100 searches.

1 2 3 4 5 6 7 8 9 101112131415161718
Number of threads

20000

40000

60000

80000

100000

Nu
m

be
r o

f i
te

ra
tio

ns

(a) MCTSbench

1 2 3 4 5 6 7 8 9 101112131415161718
Number of threads

480

500

520

540

560

Nu
m

be
r o

f i
te

ra
tio

ns

(b) MCTSNIM

1 2 3 4 5 6 7 8 9 101112131415161718
Number of threads

300

350

400

450

500

550

600

Nu
m

be
r o

f i
te

ra
tio

ns

(c) MCTSPOC

Figure 7.2: Average iterations/second on the initial board positions when using
a different number of threads

55



The MCTSbench algorithm shows a near-linear increase in iterations due to
its cheap play-outs, as seen in Figure 7.2a. The number of iterations continues to
grow until it reaches the hardware limitations at 16 threads, with approximately
113,000 iterations per second, since the Java Virtual Machine also requires some
threads.

In contrast to MCTSbench, MCTSNIM has significantly fewer iterations per
second with a less noticeable improvement (and even decrease) as the number
of threads increases, as shown in Figure 7.2b. This performance issue is due
to the two GPUs used by the NN, which impose limitations on the iterations
per second. Exceeding the optimal number of threads results in a decrease
in the number of iterations per second, as most threads have to wait for the
GPU to complete computations. Nevertheless, Figure 7.2b suggests that using
2 threads per GPU (4 in total) yields the best performance with approximately
570 iterations per second.

Based on Figure 7.2c, the inclusion of a play-out with heuristic evaluations,
as seen in MCTSPOC, results in an increase in the number of iterations, while
experiencing less severe decreases in iterations as the number of threads increases
beyond the optimal amount compared to MCTSNIM. This is because the threads
do not need to wait as long for the GPU to complete computations, as some
threads perform play-outs while others evaluate the children. This allows the
architecture to use twice as many threads per GPU as MCTSNIM, resulting in
a total of 8 threads with approximately 585 iterations per second.

In summary, based on Figure 7.2, 16 threads are selected for MCTSbench, 4
threads are selected for MCTSNIM and 8 threads are selected for MCTSPOC.

7.3.2 Initial Influence of Estimated Value

After the number of threads is determined, the parameters for Eq. 6.7 used
by MCTSNIM can be tuned. First, the initial influence of the estimated value
is tuned, using C =

√
2, s = 0, and αmin = 0 as starting points. The initial

influence is selected by testing different αinit values as shown in Figure 7.3.
Based on the figure, αinit = 0.6 results in the best performance (92.0%), which
is therefore selected.

0.0 0.2 0.4 0.6 0.8 1.0
Initial alpha value

0

20

40

60

80

100

W
in

 p
er

ce
nt

ag
e

Figure 7.3: Win percentage of MCTSNIM over different αinit values against
αβbench for 100 games

56



7.3.3 Exploration

Secondly, the exploration value is tuned, using the found αinit = 0.6, and s = 0
and αmin = 0 as starting points. Also here, the exploration constant is selected
by testing different C values, as shown in Figure 7.4. The figure shows that
C = 2 results in the best performance (92.0%).

0 1 2 3 4
Exploration constant

0

20

40

60

80

100

W
in

 p
er

ce
nt

ag
e

Figure 7.4: Win percentage of MCTSNIM over different C values against αβbench
for 100 games

7.3.4 Slope

After that, the slope value is tuned, using the found αinit = 0.6 and C = 2, and
αmin = 0 as starting point. Similar to previous parameters, different s values
are tested, as shown in Figure 7.5. It appears that s = 0.1 resulted in the best
performance (95.0%).

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Slope

0

20

40

60

80

100

W
in

 p
er

ce
nt

ag
e

Figure 7.5: Win percentage of MCTSNIM over different s values against αβbench
for 100 games

7.3.5 Minimum Influence of Estimated Value

Lastly, different αmin are tested using the found parameters of αinit = 0.6, C = 2
and s = 0.1. According to Figure 7.6, it turns out that αmin = 0.3 results in
the best-performing search algorithm (96.0%).

57



0.0 0.1 0.2 0.3 0.4 0.5
Minimum alpha value

0

20

40

60

80

100

W
in

 p
er

ce
nt

ag
e

Figure 7.6: Win percentage of MCTSNIM over different αmin values against
αβbench for 100 games

7.4 Results

In order to determine the best enhanced implicit UCT function (see Section 6.1)
to use in combination with MCTSNIM, a comparison is conducted between each
UCT function and the two benchmark models in Subsection 7.4.1. To better
compare these win rates among the UCT functions, games are also played be-
tween completed UBFM and the benchmark models in Subsection 7.4.2. Lastly,
games are played between MCTSNIM and completed UBFM in Subsection 7.4.3
to assess their respective performances. Due to time constraints, all these ex-
periments are carried out on Breakthrough, while Lines of Action is only used
as verification in Section 7.8.

7.4.1 Comparing the UCT functions of MCTSNIM against
Benchmark Models

The three different suggested UCT functions (Eqs. 6.4, 6.6 and 6.7) are com-
pared to the original implicit UCT function (Eq. 3.4) to see whether and which

Model UCT function Parameters

MCTSbase (1− α)wini + αvτi + C ×
√

ln(np)
ni

α = 0.8, and C =
0.0001

MCTSalpha (1− αi)wini + αiv
τ
i + C ×

√
ln(np)
ni

αinit = 0.6, αmin =
0.3, s = 0.1, and
C = 0.0001

MCTSexploration (1− α)wini + αvτi + P (vτ , Cnp )i ×
√

ln(np)
nc

α = 0.8, and C = 2

MCTScombined ((1− αi)wini + αiv
τ
i + P (vτ , Cnp )i ×

√
ln(np)
nc

αinit = 0.6, αmin =
0.3, s = 0.1, and
C = 2

Table 7.2: MCTSNIM models using different UCT functions

58



enhancement performs best. This is accomplished by creating four different
MCTSNIM variants using the four different implicit UCT functions. The nota-
tion of these variants and the UCT function used are described in Table 7.2.
These algorithms’ other phases are as described in Chapter 6.

As seen in Section 7.3, the parameters of the UCT function from
MCTScombined (Eq. 6.7) are tuned. However, as a different UCT function
is used, its parameters must be tuned again. The parameter values used by
MCTSbase are optimized similarly to MCTScombined, as detailed in Appendix B.
resulting in α = 0.8 and C = 0.0001. Due to time constraints, the parameter
values for MCTSalpha and MCTSexploration are a combination of these two tuned
parameter values, based on which enhancement is used (see Table 7.2).

All these search algorithms played 300 games (100 as player one, and 100 as
player two, with 1 second per move) against the benchmark models. See Table
7.3 for the results together with the confidence intervals of 95% [29].

Bot 2
Bot 1 αβbench MCTSbench

MCTSbase 73.0 ±5.0 84.3 ±4.1
MCTSalpha 92.3 ±3.0 96.0 ±2.2
MCTSexploration 83.3 ±4.2 88.0 ±3.7
MCTScombined 94.7 ±2.5 91.0 ±3.2

Table 7.3: Win percentage of MCTSNIM using different implicit UCT functions
against the benchmark models with 1 second per move for 300 games

To prove that the enhancements perform significantly better than MCTSbase,
a two-tailed test is performed between the win percentage of MCTSbase and the
win percentages MCTSalpha, MCTSexploration and MCTScombined. See Table 7.4
for the calculated p-values [56].

Bot 2
Bot 1 αβbench MCTSbench

MCTSalpha 0.0000 0.0000
MCTSexploration 0.0022 0.1934
MCTScombined 0.0000 0.0130

Table 7.4: P-values of the proposed UCT functions used by MCTSNIM against
MCTSbase

A significant difference can be found for all three UCT functions when
playing games against αβbench, while only MCTSalpha and MCTScombined have
a significant difference compared to MCTSbase when playing games against
MCTSbench. The less performing MCTSbase and MCTSexploration are excluded
from further experiments due to time constraints. Since MCTSalpha and
MCTScombined have similar results, 300 games are played between them to de-
termine which UCT function performs best (see Table 7.5).

59



Bot 2
Bot 1 MCTScombined

MCTSalpha 62.7 ±5.5

Table 7.5: Win percentage of MCTSalpha against MCTSalpha with 1 second per
move for 300 games

Tables 7.3 and 7.5 show that MCTSalpha performs better than
MCTScombined, meaning that based on these experiments Eq. 6.6 is preferred
over Eq. 6.7 for MCTSNIM.

7.4.2 Completed UBFM against the Benchmark Models

To better understand the performance of the MCTSNIM variations, 300 games
are also played between completed UBFM and the benchmark models (with 1
second per move). See Table 7.6 for the results together with the confidence
bounds of 95%.

Bot 2
Bot 1 αβbench MCTSbench

Completed UBFM 85.0 ±4.0 87.7 ±3.7

Table 7.6: Win percentage of completed UBFM against the benchmark models
with 1 second per move for 300 games

The table shows that the win rate of completed UBFM is lower than the win
rates of MCTSalpha and MCTScombined (see Tables 7.3). Therefore, for these
two algorithms, a two-tailed test has been performed with respect to completed
UBFM. See Table 7.7 for the p-values.

Bot 2
Bot 1 αβbench MCTSbench

MCTSalpha 0.0046 0.0002
MCTScombined 0.0001 0.1860

Table 7.7: P-values of MCTSNIM against completed UBFM with respect to the
benchmark models

MCTSalpha performs significantly better against both benchmark models,
while MCTScombined only performs significantly better against αβbench. Which
again shows the preference of Eq. 6.6 over Eq. 6.7 for MCTSNIM.

7.4.3 MCTSNIM vs completed UBFM

Since both MCTSalpha and MCTScombined perform better than completed
UBFM against the benchmark models, MCTSalpha and MCTScombined are also

60



compared against the completed UBFM algorithm itself, by playing 500 games
(250 as player one, 250 as player two, with 1 second per move). The results,
together with a confidence bound of 95%, can be seen in Table 7.8.

Bot 2
Bot 1 Completed UBFM
MCTSalpha 62.0 ±4.3
MCTScombined 60.6 ±4.3

Table 7.8: Win percentage of MCTSNIM against completed UBFM with 1 second
per move for 500 games

According to the table, the lower bound of the confidence interval for both
algorithms is still above 50%, indicating that both algorithms perform better
than completed UBFM when the algorithms play against each other. Again, a
(slight) preference of Eq. 6.6 over Eq. 6.7 is shown, meaning that Eq. 6.6 is the
best performing tested implicit UCT function for MCTSNIM in Breakthrough.

7.5 Additional Variants

Many different selection and play-out strategies have been explored to create
the MCTSNIM architecture described in Chapter 6. The variants that have been
explored are:

� Adding Progressive Bias:
Addition of Progressive Bias to Eq. 3.4. This resulted in the UCT function
as shown in Eq. 7.1.

UCT IM+PB = (1− α)
wi
ni

+ αvτi + C ×

√
ln(np)

ni
+

vτi
li + 1

. (7.1)

� Adding GRAVE:
Like Progressive Bias, GRAVE has also been added to Eq. 3.4. This
resulted in the UCT function as shown in Eq. 7.2.

UCT IM+GRAV E =(1− β) ∗ ((1− α)
wi
ni

+ αvτi )+

β ∗AMAFi + C ×

√
ln(np)

ni
.

(7.2)

� Rescaling the estimated values:
Since the estimated values by the trained network are unknown, the range
of values from the children could be either too narrow or too wide. There-
fore, different approaches have been tried to rescale the estimated values
before using them in Eq. 3.4. The following rescaling strategies have been
tried:

61



– Multiply the difference with respect to the mean of vτ .

– Use a fixed difference between the minimum and maximum value
with respect to the mean

– Use fixed bounds and scale the values relatively the same to the mean.

� Addition of Transposition Tables:
MCTS cannot recognize transpositions (see Subsection 3.2.1). This means
that when using a NN, many (expensive) evaluations must occur multiple
times. Therefore, a transposition table has been added to keep track of
transpositions in the leaf evaluator, such that Eq. 3.4 could be calculated
faster.

� Different initial MCTS score values:
The initial MCTS score (also known as first player urgency) can signifi-
cantly impact the search algorithm’s performance. It decides whether all
children should be expanded first, or whether to focus only on the best
child, and everything in between. Besides using the MCTS score of the
parent, there is also tested with a draw score and infinity for the initial
MCTS scores in Eq. 3.4.

� Different virtual loss values:
Like the initial MCTS score, the virtual loss can also significantly impact
the search algorithm’s performance. It indicates that a node should not
be selected too much when many threads already use it. However, when
using NN, the estimated value gets backpropagated instead. Therefore,
using a virtual loss of 1 could be too harsh since the NN will (almost)
never return a 1. This resulted in using a virtual loss of 0 in Eq. 3.4
instead.

� Different exploration formulas:
Both AlphaGo Zero and Polygames changed the exploration part of their
UCT function (as seen in Eq. 6.1 and 6.2) [14, 52]. Thus, the following
exploration formulas have also been tried in combination with UCT IM

(Eq. 3.4).

P (vτ ,
C

T
)i, the softmax only, and (7.3)

P (vτ ,
C

T
)i ×

√
np
nc
, inspired by Eq. 6.1, and (7.4)

P (vτ ,
C

T
)i ×

√
1

nc
, inspired by Eq. 6.2, (7.5)

where P (vτ , CT )i is the softmax value with temperature C
T of child i based

on vτ .

62



� Removing the implicit minimax value:
To test that the implicit minimax value did indeed increase the perfor-
mance of the search algorithm described in Chapter 6, an implementation
where no implicit minimax back-ups took place has also been made.

� Increasing α over time:
Instead of decreasing the α value, there is also tested with increasing the
α value linearly over time, meaning that the search algorithm focussed
more on the implicit minimax values when the number of visits increased
(in Eq. 6.7).

� Use different exploration constant for top K children:
The experiments showed that a lower exploration constant C resulted in
better results when using Eq. 3.4 in combination with a NN. However, this
means that there is almost no exploration. To fix this, a low exploration
constant was used for all children, while for the top K children, a new
UCT value was calculated with a second exploration constant.

� Sample uniform from top K children:
Instead of using a different exploration constant for the top K children,
it is also possible to sample them uniformly. Meaning that there is still
some exploration.

� Multiply with a random constant:
By adding randomness to all children, the exploration can be increased
even more. This is done by multiplying the UCT values with a random
constant.

The following play-out strategies have been tried on MCTSimplicit algorithm
with Eq. 3.4 for selection:

� Random play-out:
As a benchmark, the default play-out is used. Instead of evaluating the
moves with a NN, the moves are performed randomly.

� Random play-out with fixed-depth early termination:
Instead of fully completing a game, it is also possible to terminate the
play-out at a fixed depth. The backpropagated value is the estimated
value by the NN of the game position in which the play-out is terminated.

� Greedy play-out using a NN:
As a second benchmark, a full play-out is performed using the NN’s eval-
uations.

� Greedy play-out using a NN with fixed-depth early termination:
Also, for the second benchmark, the play-out can be terminated at a fixed
depth. The backpropagated value is the estimated value by the NN of the
game position in which the play-out is terminated.

� MAST:
Since a NN is computationally expensive, it is also possible to perform the
play-outs with MAST (see Section 3.3) while using a NN for the selection.

63



All the mentioned variants did not increase or even decrease the performance
of the search algorithm. Since only 1400 games of Breakthrough can be run per
day (when both algorithms get 1 second per move), the algorithms have only
been run against completed UBFM for 100 games. See appendix C for the
performance of the search algorithms. Please note that the parameters for the
shown variants have not been tuned.

7.6 Training with MCTSimplicit

In an effort to potentially improve the training process and improve the perfor-
mance of MCTSNIM and completed UBFM, four new variations of MCTSimplicit

were introduced as an alternative to completed descent (refer to Section 6.5 for
further information) to be used during training. These variations were com-
bined with the same setup, as detailed in Section 7.1, and trained for 12 hours,
using the tuned parameters from Appendix B and Section 7.3 for Eq. 3.4 and
Eq. 6.7, respectively. The performances of MCTSNIM and completed UBFM
using these new NNs were evaluated by playing 100 games (with 1 second per
move) against the benchmark models and are presented in Table 7.9. For a
baseline comparison, the network trained by completed descent (after 12 hours
of training) was also included in the table.

Bot 2
Training search algo-
rithm

Bot 1 αβbench MCTSbench

Completed descent
MCTSNIM 74.0 ±8.6 97.0
Completed UBFM 71.0 ±8.9 96.0

Descent based with Eq.
3.4 for selection

MCTSNIM 65.0 ±9.3 86.0 ±6.8
Completed UBFM 69.0 ±9.1 89.0 ±6.1

UBFM based with Eq. 3.4
for selection

MCTSNIM 66.0 ±9.3 57.0 ±9.7
Completed UBFM 75.0 ±8.5 78.0 ±8.1

Descent based with Eq.
6.7 for selection

MCTSNIM 1.0 0.0
Completed UBFM 9.0 ±5.6 1.0

UBFM based with Eq. 6.7
for selection

MCTSNIM 0.0 0.0
Completed UBFM 1.0 0.0

Table 7.9: Performance of MCTSNIM and completed UBFM against benchmark
models after training with different MCTSimplicit variants

According to the results presented in Table 7.9, the network fails to converge
after 12 hours of training when MCTSimplicit with Eq. 6.7 are used during train-
ing. On the other hand, the table shows that when MCTSimplicit variants with
Eq. 3.4 are used during training, the network converges, but its performance is
still slightly worse compared to completed descent. Using any of the suggested
MCTSimplicit variants does not improve the performance of either MCTSNIM or
completed UBFM.

64



7.7 Results Proof of Concept

To evaluate the performance of MCTSPOC, similar experiments to the ones in
Section 7.4 are conducted. The parameters values of Equation 6.4 for MCTSPOC

are determined through the process described in Appendix B, resulting in α =
0.8 and C = 0. The win percentages of MCTSPOC playing 300 games against
the benchmark models and 500 games against completed UBFM, with 1 second
per move, can be found in Table 7.10.

Bot 2
Bot 1 αβbench MCTSbench Completed UBFM
MCTSPOC 87.7 ±3.7 97.3 ±1.8 57.8 ±4.3

Table 7.10: Win percentage of MCTSPOC against the benchmark models and
completed UBFM with 1 second per move

Similar to MCTSNIM, the lower bound of the confidence interval for
MCTSPOC is still (slightly) above 50%, indicating that MCTSPOC also per-
forms better than completed UBFM when the two algorithms play against each
other. As in Subsection 7.4.2, a two-tailed test is conducted to compare the
performance of MCTSPOC against completed UBFM with respect to the bench-
mark models. The results are presented in Table 7.11.

Bot 2
Bot 1 αβbench MCTSbench

MCTSPOC 0.3417 0.0000

Table 7.11: P-values of MCTSPOC against completed UBFM with respect to
the benchmark models

The table shows no significant difference in performance compared to com-
pleted UBFM when playing against αβbench. However, a significant difference
can be observed when playing against MCTSbench, indicating that MCTSPOC

is significantly better than completed UBFM in some cases.
MCTSPOC and the two top-performing variants of MCTSNIM, namely

MCTSalpha and MCTScombined, have similar performances. However, to ob-
tain a more precise comparison between MCTSPOC and these two MCTSNIM

variants, a total of 300 games are played between them, whose results are shown
in Table 7.12.

Bot 2
Bot 1 MCTSalpha MCTScombined

MCTSPOC 46.0 ±5.6 53.3 ±5.6

Table 7.12: Win percentage of MCTSPOC against MCTSalpha and
MCTScombined with 1 second per move for 300 games

65



The results of the three algorithms demonstrate comparable performances,
indicating that each algorithm has its potential. Despite the (slightly) bet-
ter performance of MCTSalpha, it should not discourage the use of MCTSPOC

with a policy network, as it still showed (slightly) better performance than
MCTScombined even when using a heuristic evaluation function. Besides that,
MCTSPOC achieved a slightly higher win percentage than MCTSalpha against
MCTSbench. Thus, MCTSPOC is still considered a viable option. Furthermore,
the results show the preference for Eq. 6.6 over Eq. 6.7 in MCTSNIM again.

7.8 Lines of Action

In order to validate the results from the experiments in Section 7.4, some ex-
periments using the configurations outlined in Sections 7.1 to 7.3 are repeated
on the game of Lines of Action. Lines of Action is selected due to its highly-
tactical slow-progression nature, which exhibits many of the properties that pose
challenges for MCTS, making it not trivial to make good performing MCTS al-
gorithms [62]. Additionally, Lines of Action is known to prefer the αβ search
algorithm, making it an interesting game to compare the proposed MCTSNIM

algorithm against.
The only change made in the setup of the experiments concerns the bench-

mark models. αβbench uses the Ludii evaluation function for Lines of Action
instead (see Subsection 3.2.1), while MCTSbench is replaced with MCTSdefault

(using 16 threads), as MCTSbench includes the Maarten Schadd’s Breakthrough
leaf evaluation function, which is also the reason MCTSPOC is not tested for
this game. It is worth mentioning that training on the game of Lines of Action
results in 500 games per day, compared to Breakthrough’s 1000 games per day,
since games take longer to complete. This means that the network was updated
fewer times but with more data each iteration. Table 7.13 shows the results
from MCTSalpha, MCTScombined and completed UBFM against the benchmark
models after playing 300 games.

Bot 2
Bot 1 αβbench MCTSdefault

MCTSalpha 14.5 ±4.0 100
MCTScombined 7.5 ±3.0 100
Completed UBFM 7.0 ±2.9 100

Table 7.13: Win percentage of MCTSalpha, MCTScombined and completed UBFM
against the benchmark models with 1 second per move for 300 games of Lines
of Action

As shown in Table 7.13, it is not surprising to see that the αβ search al-
gorithm is still the preferred choice over the MCTSNIM variants or completed
UBFM in this highly-tactical slow-progression game. To assess whether the per-
formance of MCTSdefault was improved by the MCTSNIM variants and the com-

66



pleted UBFM algorithms, a total of 300 games were played between MCTSdefault

and αβbench. The results showed that MCTSdefault lost all 300 games, with a win
rate of 0%. This suggests that the MCTSNIM variants and completed UBFM
improve the performance concerning MCTSdefault. As in Sections 7.4 and 7.7,
a two-tailed test is conducted to compare the performance of MCTSalpha and
MCTScombined against completed UBFM with respect to αβbench (MCTSdefault

is excluded from this test since the win percentages of all tested algorithms in
Table 7.13 are similar). The results are presented in Table 7.14.

Bot 2
Bot 1 αβbench

MCTSalpha 0.0030
MCTScombined 0.8133

Table 7.14: P-values of MCTSalpha and MCTScombined against completed UBFM
with respect to the αβbench in Lines of Action

Table 7.14 shows that only the two-tailed test of MCTSalpha against com-
pleted UBFM results in a significant difference, highlighting the preference of
Eq. 6.6 over Eq. 6.7 in this game as well. Similar to previous experiments, the
MCTSNIM variants and completed UBFM are also played against each other
to verify these results. Table 7.15 shows the results from the MCTSalpha and
MCTScombined against completed UBFM after playing 500 games.

Bot 2
Bot 1 Completed UBFM
MCTSalpha 64.1 ±4.2
MCTScombined 54.8 ±4.4

Table 7.15: Win percentage of MCTSalpha and MCTScombined against completed
UBFM with 1 second per move for 500 games of Lines of Action

The table demonstrates that MCTSalpha and MCTScombined perform better
than completed UBFM in Lines of Action, even when no game-specific pa-
rameter tuning is applied. Moreover, the lower confidence interval bound of
MCTSalpha is notably higher than 50%, indicating that this algorithm outper-
forms the completed UBFM by a significant margin. In addition, MCTSalpha

even performs better against completed UBFM in Lines of Action than in Break-
through, confirming the validity of the algorithm’s effectiveness in other games.

The results in Table 7.13 and Table 7.15 indicate that MCTSalpha also per-
forms better than MCTScombined, suggesting that Eq. 6.6 is also preferred over
Eq. 6.7 in this game. To further demonstrate this preference, 300 games of
Lines of Action are played with 1 second per move between them. The results
of these games are shown in Table 7.16.

67



Bot 2
Bot 1 MCTScombined

MCTSalpha 70.7 ±5.2

Table 7.16: Win percentage of MCTSalpha against MCTScombined with 1 second
per move for 300 games of Lines of Action

The results of MCTSalpha against MCTScombined in Table 7.16 show a strong
preference for Eq. 6.6 over Eq. 6.7 again. Meaning that also for Lines of Action,
Eq. 6.6 is the best performing tested implicit UCT function for MCTSNIM.

68



Chapter 8

Conclusions and Future
Research

This chapter serves as a conclusion to the research presented in this thesis.
The problem statement and research questions, introduced in Chapter 1, are
revisited and evaluated in Sections 8.1 and 8.2, taking into account the findings
presented throughout the thesis. Additionally, Section 8.3 provides directions
for potential future research in the form of new research ideas and improvements
to the current study.

8.1 Research Questions

This section answers the four proposed research questions based on the results
of this thesis.

1. Can Deep Reinforcement Learning and Monte Carlo Tree Search using
implicit Minimax backups be combined?

The proposed Monte Carlo Tree Search using Network-based Implicit Minimax
algorithm combines Monte Carlo Tree Search and Deep Reinforcement Learn-
ing. The algorithm incorporates modifications similar to state-of-the-art algo-
rithms like AlphaGo and Polygames, with changes made to the phases of the
MCTS architecture. More precisely, the play-out phase was removed, and the
estimated values were backpropagated instead, improving the performance. The
most significant improvement, however, came from an enhancement to the UCT
selection function. Out of the three proposed UCT functions, the UCT function
that uses implicit minimax values with a linear decreasing α value performed
best. The function prioritizes implicit minimax values during the initial stages
and gradually shifts focus towards backpropagated win rates as the number of
visits to a node increases. Furthermore, the architecture from the proof of con-
cept demonstrated that combining play-outs guided by a heuristic evaluation
can also result in an effective search algorithm.

69



2. On which perfect-information games does the model perform well?

The results of the proposed Monte Carlo Tree Search using Network-based Im-
plicit Minimax algorithms and the proof of concept have shown their effec-
tiveness in the game of Breakthrough, as both have outperformed the tested
benchmark models.

To further verify the generalizability of these algorithms, their performance
was also tested in the game Lines of Action, which also showed positive re-
sults. The successful performance of the proposed algorithms in multiple games
highlights their potential for application in other games as well.

3. Can the enhanced MCTS algorithm improve the descent framework?

The performed experiments on Breakthrough showed that using the enhanced
implicit UCT function (Eq. 6.7) in the descent framework resulted in neural
networks that did not converge, whereas using the original implicit UCT algo-
rithm (Eq. 3.4) led to convergence almost as quickly as the networks trained
using completed descent.

However, none of the suggested MCTSimplicit algorithms for training resulted
in better-performing networks than the one trained using completed descent af-
ter 12 hours of training. This indicates that, with the current parameter configu-
ration, the use of MCTSNIM and MCTSimplicit did not improve the performance
of the descent framework. Therefore, completed descent should still be used.

4. How does the enhanced MCTS algorithm perform against state-of-the-art
algorithms?

While both playing against the benchmark models as against each other, the
proposed Monte Carlo Tree Search using Network-based Implicit Minimax algo-
rithm and the proof of concept performed better than the state-of-the-art algo-
rithm, completed UBFM. The proposed search algorithms achieved win rates of
62.0% and 57.8% in Breakthrough, respectively, making them both promising
search algorithms. This has also been validated by playing games in Lines of
Action, in which the proposed Monte Carlo Tree Search using Network-based
Implicit Minimax algorithm achieved a win rate of 64.1%.

8.2 Problem Statement

After exploring the research questions and finding answers to them, the problem
statement can be addressed. The problem statement was formulated as follows:

How to improve Monte Carlo Tree Search by using Deep Reinforcement
Learning

The experiments carried out in this thesis have confirmed that combining
Monte Carlo Tree Search with Deep Reinforcement Learning is possible by using
the enhancements discussed in response to previous research questions. The

70



results show that these modifications improved the algorithm’s performance, as
it outperformed benchmark models and, most significantly, a state-of-the-art
algorithm in the games of Breakthrough and Lines of Action.

8.3 Future Research

Although the MCTS algorithm using Network-based Implicit Minimax outper-
formed the completed UBFM algorithm, there is still room for improvement.
One area of focus for improvement is the UCT selection function, as changes to
this have already led to significant performance gains.

So far, the parameters used by the enhanced UCT function have been opti-
mized using only a simple technique and a limited range of values. Tuning the
parameters can significantly improve the performance of the enhanced MCTS
search algorithm, making it a priority for further improvement. However, other
enhancements to the UCT function could potentially also improve the perfor-
mance, for example, by decreasing the α value non-linear instead.

In addition to the UCT function, modifications can also be made to other
phases of the MCTS algorithm, for example, by backpropagating the implicit
minimax values instead. On top of that, the proof of concept has already shown
that changes to the play-out phase of the algorithm could also lead to a signif-
icant improvement in performance. It would be interesting to see if adding a
fast policy network (as used by AlphaGo) would increase its performance since
better play-outs could be performed.

Improvements can also be made to the training of the neural networks. Cur-
rently, the search algorithms are trained with 1 second per move, meaning that
the network aims to predict the value found after 1 second of searching. It would
be interesting to see if increasing the time per move results in better-performing
search algorithms since the network will learn to make better estimates. Ad-
ditionally, the neural network could be trained for a more extended period of
time, such as the 30 days used by Cohen-Solal.

As attempted, changing the search algorithm during training can also im-
prove the performance of the NN. Due to time constraints, only a limited num-
ber of variations were attempted in the current experiments on the game of
Breakthrough. However, the experiments did show the importance of the UCT
function used during training. By testing the other suggested UCT functions,
creating more variations, trying different games, optimizing the weight tuning
for both training and usage of the neural networks, and training for a longer
time, it is potentially possible to develop a NN that outperforms the one trained
by the completed descent method, since (almost) similar results have already
been found.

Finally, the conducted experiments have been limited to a small number of
games. Further testing is necessary to determine if the results also hold for
other games.

71



Bibliography

[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-Time Analysis of
the Multiarmed Bandit Problem. Machine Learning, 47(2):235–256, 2002.

[2] Yngvi Bjornsson and Hilmar Finnsson. Cadiaplayer: A Simulation-based
General Game Player. IEEE Transactions on Computational Intelligence
and AI in Games, 1(1):4–15, 2009.

[3] Stevo Bozinovski. A Self-Learning System using Secondary Reinforcement.
Cybernetics and Systems Research, pages 397–402, 1982.

[4] Dennis M. Breuker. Memory versus Search in Games. PhD thesis, Maas-
tricht University, 1998.

[5] John S. Bridle. Probabilistic Interpretation of Feedforward Classification
Network Outputs, with Relationships to Statistical Pattern Recognition.
In Neurocomputing, pages 227–236. Springer, 1990.

[6] Cameron B. Browne. Automatic Generation and Evaluation of Recombi-
nation Games. PhD thesis, Queensland University of Technology, 2008.

[7] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lu-
cas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton. A survey of Monte Carlo Tree
Search methods. IEEE Transactions on Computational Intelligence and AI
in Games, 4(1):1–43, 2012.

[8] Cameron B. Browne, Dennis J.N.J. Soemers, Éric Piette, Matthew
Stephenson, and Walter Crist. Ludii Language Reference. https://ludii.
games/downloads/LudiiLanguageReference.pdf, 2022.

[9] Cameron B. Browne, Matthew Stephenson, Éric Piette, and Dennis J.N.J.
Soemers. A Practical Introduction to the Ludii General Game System. In
Advances in Computer Games, pages 167–179. Springer, 2019.

[10] Bernd Brügmann. Monte Carlo Go. Technical report, Physics Department,
Syracuse University, Syracuse, NY, 1993.

72

https://ludii.games/downloads/LudiiLanguageReference.pdf
https://ludii.games/downloads/LudiiLanguageReference.pdf


[11] Jay Burmeister and Janet Wiles. The challenge of Go as a domain for ai
research: a comparison between Go and chess. In Proceedings of Third Aus-
tralian and New Zealand Conference on Intelligent Information Systems.
ANZIIS-95, pages 181–186. IEEE, 1995.

[12] Murray Campbell, A. Joseph Hoane Jr, and Feng-hsiung Hsu. Deep Blue.
Artificial Intelligence, 134(1-2):57–83, 2002.

[13] Tristan Cazenave. Generalized rapid action value estimation. In Twenty-
Fourth International Joint Conference on Artificial Intelligence, 2015.

[14] Tristan Cazenave, Yen-Chi Chen, Guan-Wei Chen, Shi-Yu Chen, Xian-
Dong Chiu, Julien Dehos, Maria Elsa, Qucheng Gong, Hengyuan Hu, Vasil
Khalidov, Cheng-Ling Li, Hsin-I Lin, Yu-Jin Lin, Xavier Martinet, Ve-
gard Mella, Jeremy Rapin, Baptiste Roziere, Gabriel Synnaeve, Fabien
Teytaud, Olivier Teytaud, Shi-Cheng Ye, Yi-Jun Ye, Shi-Jim Yen, and
Sergey Zagoruyko. Polygames: Improved Zero Learning. ICGA Journal,
42(4):244–256, 2020.

[15] Guillaume M. J.B. Chaslot, Mark H.M. Winands, H. Jaap van den Herik,
Jos W.H.M. Uiterwijk, and Bruno Bouzy. Progressive Strategies for Monte-
Carlo Tree Search. New Mathematics and Natural Computation, 4(03):343–
357, 2008.

[16] Guillaume M.J.B. Chaslot, Mark H.M. Winands, and H. Jaap van den
Herik. Parallel monte-carlo tree search. In H. Jaap van den Herik,
Xinhe Xu, Zongmin Ma, and Mark H.M. Winands, editors, Computers
and Games, pages 60–71. Springer Berlin Heidelberg, 2008.

[17] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-Column Deep
Neural Networks for Image Classification. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3642–3649. IEEE, 2012.

[18] Quentin Cohen-Solal. Learning to play Two-Player Perfect-information
Games without Knowledge. arXiv preprint arXiv:2008.01188, 2020.

[19] Quentin Cohen-Solal. Completeness of Unbounded Best-First Game Algo-
rithms. arXiv preprint arXiv:2109.09468, 2021.

[20] Quentin Cohen-Solal and Tristan Cazenave. Minimax Strikes Back. arXiv
preprint arXiv:2012.10700, 2020.

[21] Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search. In International Conference on Computers and Games, pages
72–83. Springer, 2006.

[22] Adriaan D. De Groot. Thought and Choice in Chess. De Gruyter Mouton,
1960.

73



[23] M. Dienstknecht. Enhancing Monte Carlo Tree Search by Using Deep
Learning Techniques in Video Games. Master’s thesis, Maastricht Uni-
versity, 2018.

[24] Kunihiko Fukushima and Sei Miyake. Neocognitron: A Self-Organizing
Neural Network Model for a Mechanism of Visual Pattern Recognition.
In Competition and Cooperation in Neural Nets, pages 267–285. Springer,
1982.

[25] Sylvain Gelly and David Silver. Combining Online and Offline Knowledge
in UCT. In Proceedings of the 24th international conference on Machine
learning, pages 273–280, 2007.

[26] Aurélien Géron. Hands-on Machine Learning with Scikit-Learn, Keras, and
TensorFlow. O’Reilly Media, Inc., 2022.

[27] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep Sparse Rectifier
Neural Networks. In Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, pages 315–323. JMLR Work-
shop and Conference Proceedings, 2011.

[28] Kerry Handscomb. 8x8 Game Design Competition. Abstract Games, (7),
2001.

[29] Ernst A. Heinz. Self-play Experiments in Computer Chess Revisited. In
H.J. van den Herik and B. Monien, editors, Advances in Computer Games
9, pages 73–92. Maastricht University, 2001.

[30] Donald E. Knuth and Ronald W. Moore. An Analysis of Alpha-Beta Prun-
ing. Artificial Intelligence, 6(4):293–326, 1975.

[31] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo Planning.
In European Conference on Machine Learning, pages 282–293. Springer,
2006.

[32] Richard E. Korf and David Maxwell Chickering. Best-First Minimax
Search. Artificial intelligence, 84(1-2):299–337, 1996.

[33] Marc Lanctot, Mark H.M. Winands, Tom Pepels, and Nathan R. Sturte-
vant. Monte Carlo Tree Search with Heuristic Evaluations using Implicit
Minimax Backups. In 2014 IEEE Conference on Computational Intelli-
gence and Games, pages 1–8. IEEE, 2014.

[34] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller.
Efficient Backprop. In Neural Networks: Tricks of the trade, pages 9–48.
Springer, 2012.

[35] Long-Ji Lin. Reinforcement Learning for Robots using Neural Networks.
Carnegie Mellon University, 1992.

74



[36] Richard J. Lorentz. Amazons discover Monte-Carlo. In International Con-
ference on Computers and Games, pages 13–24. Springer, 2008.

[37] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang.
The Expressive Power of Neural Networks: A View from the Width. Ad-
vances in Neural Information Processing Systems, 30, 2017.

[38] T Anthony Marsland. A Review of Game-Tree Pruning. ICCA Journal,
9(1):3–19, 1986.

[39] Pim Nijssen and Mark H.M. Winands. Playout Search for Monte-Carlo
Tree Search in Multi-Player Games. In Advances in Computer Games,
pages 72–83. Springer, 2011.

[40] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural
Networks. arXiv preprint arXiv:1511.08458, 2015.

[41] Tom Pepels, Mandy J.W. Tak, Marc Lanctot, and Mark H.M. Winands.
Quality-based Rewards for Monte-Carlo Tree Search Simulations. In ECAI
2014, pages 705–710. IOS Press, 2014.

[42] Éric Piette, Dennis J.N.J. Soemers, Matthew Stephenson, Chiara F. Sironi,
Mark H.M. Winands, and Cameron B. Browne. Ludii–The Ludemic Gen-
eral Game System. In ECAI 2020, pages 411–418. IOS Press, 2020.

[43] Michael J.D. Powell. An Efficient Method for finding the Minimum of a
Function of Several Variables without calculating Derivatives. The Com-
puter Journal, 7(2):155–162, 1964.

[44] Frank Rosenblatt. The Perceptron: a Probabilistic Model for Information
Storage and Organization in the Brain. Psychological Review, 65(6):386,
1958.

[45] Sid Sackson. A Gamut of Games. Random House, New York, NY, USA.,
1969.

[46] Arthur L. Samuel. Some Studies in Machine Learning using the Game of
Checkers. IBM Journal of Research and Development, 11(6):601–617, 1967.

[47] Maarten P.D. Schadd. Selective Search in Games of Different Complexity.
PhD thesis, Maastricht University, 2011.

[48] Jonathan Schaeffer. The History Heuristic. ICGA Journal, 6(3):16–19,
1983.

[49] Robert J Schalkoff. Artificial Neural Networks. McGraw-Hill Higher Edu-
cation, 1997.

75



[50] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thomas Graepel, and Demis Hassabis. Master-
ing the Game of Go with Deep Neural Networks and Tree Search. Nature,
529(7587):484–489, 2016.

[51] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. A General Reinforcement Learning Algorithm that masters
Chess, Shogi, and Go through Self-play. Science, 362(6419):1140–1144,
2018.

[52] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre,
George Van Den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the Game of Go without Human Knowledge. Nature, 550(7676):354–359,
2017.

[53] Chiara F. Sironi and Mark H.M. Winands. Comparison of rapid action
value estimation variants for general game playing. In 2016 IEEE Confer-
ence on Computational Intelligence and Games (CIG), pages 1–8. IEEE,
2016.

[54] David J. Slate and Lawrence R. Atkin. Chess 4.5—the Northwestern Uni-
versity Chess Program. In Chess skill in Man and Machine, pages 82–118.
Springer, 1983.

[55] Nathan Sturtevant. An Analysis of UCT in Multi-Player Games. ICGA
Journal, 31(4):195–208, 2008.

[56] Michael Sullivan. Statistics. Informed Decisions Using Data. Pearson, fifth
edition, 2017.

[57] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische An-
nalen, 100(1):295–320, 1928.

[58] Mark H.M. Winands. Analysis and Implementation of Lines of Action.
Master’s thesis, Maastricht University, 2000.

[59] Mark H.M. Winands. Monte Carlo Tree Search in Board Games. In Ryohei
Nakatsu, Matthias Rauterberg, and Paolo Ciancarini, editors, Handbook of
Digital Games and Entertainment Technologies, chapter 3, pages 47–76.
Springer Singapore, 2017.

76



[60] Mark H.M. Winands and Yngvi Björnsson. αβ-based Play-Outs in Monte-
Carlo Tree Search. In 2011 IEEE Conference on Computational Intelligence
and Games (CIG’11), pages 110–117. IEEE, 2011.

[61] Mark H.M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte-
Carlo Tree Search Solver. In International Conference on Computers and
Games, pages 25–36. Springer, 2008.

[62] Mark H.M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte
carlo tree search in lines of action. IEEE Transactions on Computational
Intelligence and AI in Games, 2(4):239–250, 2010.

[63] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley Longman
Publishing Co., Inc., 1984.

[64] Albert L. Zobrist. A New Hashing Method with Application for Game
Playing. ICGA Journal, 13(2):69–73, 1990.

77



Appendices

78



Appendix A

Number of Games for
Experience Replay

The original descent framework presented in [18] handled experience replay
differently as described in Section 5.5. As a result, the number of games had
to be tuned, and three values were tested: 1 (no experience replay), 3, and 5.
Due to time constraints, the neural network was trained for only 12 hours. The
completed UBFM then used this network to play 100 games in Breakthrough
against benchmark models with 1 second per move. Even though the confidence
intervals are large when only using 100 games, Figure A.1 shows that a network
trained on three games resulted in the quickest convergence among the tested
values. The same setup has been used, as described in Section 7.1.

1 3 5
Number of Games for Experience Replay

0

20

40

60

80

100

W
in

 p
er

ce
nt

ag
e

AlphaBetaSearchHF
MCTS_ProgressiveBias_MAST

Figure A.1: Performance of Neural Network after training with different number
of games in experience replay

As mentioned in Section 7.6, it is worth mentioning that the performance
of the 12 hour version using completed descent performs slightly better on
MCTSbench than the 36 hour version (as seen in Section 7.4.2). This does

79



not mean the network is “better”. The network performs significantly worse on
αβbench, showing that the NN did not learn enough game positions to perform
well at αβbench yet. On top of that, the experiments have only been tested for
a limited amount of games (with large confidence intervals).

80



Appendix B

Parameter Selection of
MCTSbase and MCTSPOC

Both MCTSPOC and MCTSbase use a different UCT formula, as seen in Sections
6.4 and 7.4, respectively. This means that the parameters used need to be tuned
separately. Both algorithms only require α and C to be tuned (see Eq. 3.4 and
6.4). The approach used in Section 7.3 has also been applied for selecting these
parameters. A total of 100 games has been run against αβbench with 1 second
per move. See Figure B.1 for the results.

0.0 0.2 0.4 0.6 0.8 1.0
alpha value

0

20

40

60

80

100

W
in

 p
er

ce
nt

ag
e

(a) MCTSPOC with C =
√

2

0.0 0.2 0.4 0.6 0.8 1.0
alpha value

0

20

40

60

80

100

W
in

 p
er

ce
nt

ag
e

(b) MCTSbase with C =
√

2

0.0 1.0 2.0 3.0 4.0
Exploration constant

0

20

40

60

80

100

W
in

 p
er

ce
nt

ag
e

(c) MCTSPOC with α = 0.8

0.0 0.0001 0.001 0.01 1.0 1.414
Exploration constant

0

20

40

60

80

100

W
in

 p
er

ce
nt

ag
e

(d) MCTSbase with α = 0.8

Figure B.1: Trying different α and C values to tune the parameters of MCTSPOC

and MCTSbase

81



First, for both MCTSPOC and MCTSbase, different α values have been tested
with C =

√
2 (see Figures B.1a and B.1b). This resulted in α = 0.8 as the best-

performing tested value for both algorithms, having a win percentage of 73.0%
and 64.0% for MCTSPOC and MCTSbase, respectively. By using this α value,
different C have been tested as well (see B.1c and B.1d). Figure B.1c shows that
for MCTSPOC the best exploration constant is C = 0 with a win percentage
of 84.0%, while Figure B.1d shows that for MCTSbench the best exploration
constant is C = 0.0001 with a win percentage of 83.0%.

It is important to note that the exploration constants for MCTSPOC and
MCTSbase may appear to be much lower than that of MCTScombined, which
uses C = 2 as seen in Section 7.3. However, this is not a fair comparison as
MCTScombined uses a softmax function that also scales down the exploration val-
ues, resulting in smaller values as well. Thus, when considering the exploration
constants of these algorithms, they are more similar than they may appear at
first.

82



Appendix C

Additional Variants

The suggested variants from Section 7.5 have been tested for 100 games (50 as
player one, 50 as player two, with 1 second per move) against completed UBFM
(see Table C.1). If the requirement of more than four wins is met [29], the
confidence bound of 95% is also calculated.

Bot 1 Average As player 1 As player 2
MCTSbase with GRAVE 0.0 0.0 0.0
MCTSbase with with Progressive Bias 11.0 ±6.1 2.0 20.0 ±11.1
MCTSbase with multiplied difference 24.0 ±8.4 28.0 ±12.4 20.0 ±11.1
MCTSbase with fixed difference 16.0 ±7.2 20.0 ±11.1 12.0 ±9.0
MCTSbase with fixed bounds 19.0 ±7.7 22.0 ±11.5 16.0 ±10.2
MCTSbase with TT 27.0 ±8.7 34.0 ±13.1 20.0 ±11.1
MCTSbase with Qinit = 0 27.0 ±8.7 32.0 ±12.9 22.0 ±11.5
MCTSbase with Qinit =∞ 16.0 ±7.2 20.0 ±11.1 12.0 ±9.0
MCTSbase with no virtual loss 31.0 ±9.1 40.0 ±13.6 22.0 ±11.5
MCTSbase with Eq. 7.3 25.0 ±8.5 30.0 ±12.7 20.0 ±11.1
MCTSbase with Eq. 7.4 33.0 ±9.2 36.0 ±13.3 30.0 ±12.7
MCTSbase with Eq. 7.5 26.0 ±8.6 30.0 ±12.7 22.0 ±11.5
MCTSbase without implicit minimax 17.0 ±7.4 26.0 ±12.2 8.0
MCTSalpha with an increasing alpha 23.0 ±8.2 30.0 ±12.7 16.0 ±10.2
MCTSbase with two exploration constants 0.0 0.0 0.0
MCTSbase with random sample from top K 8.0 ±5.3 8.0 8.0
MCTSbase with random multiplier 36.0 ±9.4 42.0 ±13.7 30.0 ±12.7
MCTSbase 42.0 ±9.7 58.0 ±13.7 26.0 ±12.2
MCTSbase with random play-out 10.0 ±5.9 8.0 12.0 ±9.0
MCTSbase with random play-out and fixed-depth early termination 12.0 ±6.4 10.0 ±8.3 14.0 ±9.6
MCTSbase with greedy play-out 0.0 0.0 0.0
MCTSbase with greedy play-out and fixed-depth early termination 6.0 ±4.7 0.0 12.0 ±9.0
MCTSbase with MAST 7.0 ±5.0 6.0 8.0
MCTSPOC with Eq. 6.7 18.0 ±7.5 24.0 ±11.8 12.0 ±9.0

Table C.1: Win percentage of other variations against completed UBFM for 100
games (50 as player one, 50 as player two).

It is worth noting that the parameters of these MCTSNIM variants are not
tuned, indicating that it is still possible to achieve higher win percentages.
However, it should be mentioned that all these variants in their current con-
figurations did not improve or even decreased the performance of MCTS with
Network-based Implicit Minimax.

83


	Introduction
	Game AI
	Search Algorithms
	Deep Reinforcement Learning
	Problem Statement and Research Questions
	Thesis Outline

	Game Environment
	Ludii
	Breakthrough
	Lines of Action

	Search Algorithms
	Methods for Traversing a Tree
	Minimax Search
	 Search
	Unbounded Best-First Minimax

	Monte Carlo Tree Search
	Selection
	Play-out
	Expansion
	Backpropagation
	Final Move Selection

	Monte Carlo Tree Search Solver
	Backpropagation
	Selection

	MCTS using Implicit Minimax Backups
	Selection
	Backpropagation


	Deep Learning
	Neural Networks
	Convolutional Neural Networks
	Convolutional Layer

	Reinforcement Learning

	Combining Search Algorithms and Deep Reinforcement Learning
	Search Algorithm
	Descent Minimax

	Action Selection
	Action Selection during Play-out
	Final Move Selection

	Terminal Evaluation
	Additive Depth Heuristic
	Score heuristic

	Data Selection for Learning
	Terminal Learning
	Root Learning
	Tree Learning

	Experience Replay
	Training the Neural Network
	Completion

	Monte Carlo Tree Search using Network-based Implicit Minimax
	Selection
	Exploration
	Exploitation

	Play-out
	Backpropagation
	Proof of Concept
	Training with MCTSimplicit

	Experiments
	Setup
	Benchmark Models
	CNN Architecture
	Training of Neural Network with Descent
	Computational Specifications

	Implementation Details
	Completed UBFM and Completed Descent
	MCTSNIM
	MCTSPOC

	Parameter Selection
	Number of Threads
	Initial Influence of Estimated Value
	Exploration
	Slope
	Minimum Influence of Estimated Value

	Results
	Comparing the UCT functions of MCTSNIM against Benchmark Models
	Completed UBFM against the Benchmark Models
	MCTSNIM vs completed UBFM

	Additional Variants
	Training with MCTSimplicit
	Results Proof of Concept
	Lines of Action

	Conclusions and Future Research
	Research Questions
	Problem Statement
	Future Research

	Appendices
	Number of Games for Experience Replay
	Parameter Selection of MCTSbase and MCTSPOC
	Additional Variants

