
Developing Card Playing Agent for
Tales of Tribute AI Competition

(Tworzenie agenta grającego w grę
Tales of Tribute)

Adam Ciężkowski Artur Krzyżyński

Praca licencjacka

Promotor: dr Jakub Kowalski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

30 czerwca 2023

Abstract

The main goal of this thesis is to implement the agent playing the deck-building
card game Tales of Tribute. It is one of the games that will appear as a competition
at the IEEE Conference on Games 2023 and in which we plan to compete. In
subsequent chapters, we presented game principles, the Scripts of Tribute engine that
simulates the game environment, our ideas to optimise Monte Carlo Tree Search,
and an evolutionary approach to finding the proper parameter values. We tested
our agent against the agents provided by the competition organisers, and in 81% of
the tests, our agent outperformed the strongest of them.

Głównym celem pracy jest implementacja agenta grającego w grę karcianą Tales
of Tribute. Jest to jedna z gier, która pojawi się jako zawody na IEEE Conference
on Games 2023 i w których to zawodach planujemy rywalizować. W kolejnych roz-
działach przedstawiliśmy zasady gry, silnik Scripts of Tribute symulujący środowisko
gry, nasze pomysły na optymalizację algorytmu Monte Carlo Tree Search oraz uży-
cie algorytmu ewolucyjnego w celu znalezienia odpowiednich wartości parametrów.
Testowaliśmy naszego agenta przeciwko agentom dostarczonym przez organizatorów
konkursu, wygrywając z najsilniejszym z nich w 81%.

Contents

1 Introduction 7

2 Tales of Tribute 9

2.1 Game rules . 9

2.1.1 Cards effects . 11

2.1.2 Win conditions . 12

3 Scripts of Tribute 13

3.1 Implementing a bot . 13

3.2 Game Runner . 14

3.3 GUI . 15

4 Core Idea of the Agent 17

4.1 Focusing on our turn . 17

4.2 Monte Carlo Tree Search . 17

4.3 Board evaluation . 18

5 Main Challenges 19

5.1 Branching factor . 19

5.1.1 Problem . 19

5.1.2 Solution . 19

5.2 Non-deterministic game state transitions 20

5.2.1 Problem . 20

5.2.2 Solution . 21

5.3 Time management . 21

5

6 CONTENTS

5.3.1 Problem . 21

5.3.2 Solution . 22

5.4 Creating evaluation function . 22

5.4.1 Game phases . 23

5.4.2 Adjusting weights using evolutionary algorithm 24

6 Experiments 27

6.1 Multiple MCTS trees . 27

6.2 Evolving parameter weights . 27

6.3 Results against agents from the SoT engine 28

7 Conclusions 29

Bibliography 31

A Constants 33

B Tier lists 35

B.1 Card tier list . 35

B.2 Agent tier list . 37

Chapter 1

Introduction

The annual IEEE Conference on Games (CoG) is one of the largest conferences on
the scientific approach to games, and AI agent competitions are an important part
of this event. They are motivation to develop new methods of competitive artificial
intelligence and an opportunity to showcase the current achievements in this area.
One of the games appearing at this year’s CoG edition is Tales of Tribute (ToT). In
this thesis, we describe our agent for this game. It begins with a description of the
game, followed by a description of Scripts of Tribute (SoT) – the engine allowing the
implementation of agents. In the following chapters, we focused on the challenges
we encountered and how we solved them. We described the optimisations used in
the implementation of the Monte Carlo Tree Search (MCTS) algorithm and the
details of the evolutionary algorithm used to improve MCTS parameters. At the
end of the thesis, we presented the results of experiments testing multiple variants
of our algorithm and comparing our agent with the baseline bots provided by the
competition’s organisers.

7

Chapter 2

Tales of Tribute

Tales of Tribute is a two-player deck-building card game inside the popular game
The Elder Scrolls Online, introduced with the High Isle expansion. In this thesis,
we have not described the entire rules but only a subset implemented in the SoT
engine on which the competition takes place.

2.1 Game rules

There are seven card decks. Each deck is represented by a different patron. At the
beginning of the game, players choose four patrons 2.1 in order 1221 (where ”1”
is the first player and ”2” is the second player) from six out of seven decks (the
remaining Treasury patron with its deck is present in all matches). Then the main
part of the game begins. Players start with ten starter cards in their decks and play
in turns. At the beginning of the turn, the current player draws five cards from
their draw pile. There is no cost to playing cards. After a card is played, it goes
to the played pile. At the end of the turn, all cards from the played pile go to the
cooldown pile. When the draw pile is empty, the cooldown pile is shuffled into the
draw pile. Cards from chosen patrons’ decks and from the Treasury deck go to the
tavern, where they can be purchased by players. All the time, there are five available
cards to buy. When the player decides to get the card, it goes to their cooldown pile,
and the empty space in the tavern is filled by the next card. There are four main
types of cards:

1. Action card – immediately applies certain effects and goes to the cooldown
pile.

2. Agent card – immediately applies certain effects. After the activation, it is
placed on the board and can be used every turn to apply the same effect until
killed by the opponent; in this case, it goes to the cooldown pile. Agents can
be destroyed by power (1 power = 1 HP).

9

10 CHAPTER 2. TALES OF TRIBUTE

3. Contract action card – works like an action card but is destroyed after use.

4. Contract agent card – works like an agent card but is destroyed when killed.

Except for playing and buying cards, players can also call on a patron (from
the four chosen ones and the Treasury). Patrons have their costs and have different
effects. They can have different statuses during the game. They can favour us, the
opponent, or be neutral. Interaction with a patron changes its status. We can only
call on one patron per turn. There are seven patrons:

Patron name Cost Effect

Saint Pelin 2 Power
Return up to one agent card
from your cooldown pile to the
top of your draw pile.

Grandmaster Delmene
Hlaalu

Sacrifice a card with a
cost > 0

Gain prestige equal to the
card’s cost minus 1.

Duke of Crows
All coins (cannot favour
the current player)

Gain power equal to paid
coins minus 1.

Ansei Frandar Hunding
2 Power (cannot favour
the current player)

Gain 1 coin. When being
favoured, gain 1 coin at the
start of the turn.

Red Eagle, King of the
Reach

2 Power Draw 1 card.

Rajhin, the Purring
Liar

3 Coins
Place 1 Bewilderment (a card
with no effects) in your oppo-
nent’s cooldown pile.

Treasury 2 Coin
Turn one of the played cards
into a Writ of Coin (card with
effect: Coin +2).

The Treasury is always neutral. After calling on Ansei, he always changes his
status to favour the current player. The rest of the patrons change status by one
step, that is, from favouring the enemy to neutral and from neutral to favouring the
current player.

2.1. GAME RULES 11

Figure 2.1: Patron selection

2.1.1 Cards effects

Cards have different effects. Below, we presented all the keywords:

1. Gain n coins.

2. Gain n power.

3. Draw n cards.

4. Call on one additional patron.

5. Destroy up to n cards in play.

6. Destroy up to n opponent’s active agents.

7. Lower the opponent’s prestige by n.

8. Return up to n cards from cooldown pile to the top of the draw pile.

9. Replace up to n cards from the tavern.

10. Acquire one card from the tavern with a cost up to n.

11. Heal agent by n health points (only agents have it).

12. The opponent discards n cards from their hand at the start of their turn.

Cards can have combo effects. A card combo is activated after playing a certain
number of cards from the same deck in one turn. Combos cause effects from the
same pool described above.

12 CHAPTER 2. TALES OF TRIBUTE

Figure 2.2: Example cards from SoT GUI

2.1.2 Win conditions

There are several win conditions:

• Gain at least 40 prestige and hold the lead (or tie) after your opponent’s round.

• Be favoured by all patrons.

• Gain at least 80 prestige.

Chapter 3

Scripts of Tribute

3.1 Implementing a bot

Since the SoT engine1 [1, 2] is written in C#, the agents should also be written in
this language. The bot class should inherit from the abstract AI class and override
the following three methods:

• PatronId SelectPatron(List<PatronId> availablePatrons, int round)

The SelectPatronmethod is called when players select patrons before a game.
We are given a list of patrons that are still available and the number of the
selection turn. The method should select a patron.

• Move Play(GameState gameState, List<Move> possibleMoves)

The Play method is called each time our agent makes a move. It receives a
current GameState object and a list of possible moves. The method should
return one of the listed moves.

• void GameEnd(EndGameState state, FullGameState? finalBoardState)

The GameEnd method is called after a game. It allows for the analysis of the
match data. Players are provided with EndGameState and finalBoardState
objects that contain information about the winner and the final board state.

A Log method is available to save information during the game, which will be
displayed by the GUI or redirected to a file by a Game Runner.

The GameState object provides the ToSeededGameState method, which takes
a seed as an argument and creates a SeededGameState object. This object al-
lows to simulate further gameplay using the specified seed. The SeededGameState
has an ApplyMove method that takes one of the possible moves and returns the
SeededGameState object after applying it and a new list of possible moves.
1https://github.com/ScriptsOfTribute

13

14 CHAPTER 3. SCRIPTS OF TRIBUTE

After creating the bot, it should be compiled into a library. The resulting DLL
file must be placed in the right folder for the GUI and Console Runner to load the
agent.

3.2 Game Runner

The SoT engine includes a console program called Game Runner 3.1. It enables to
load agents from a DLL file and run games between them. It is also possible to
choose the number of matches to be played, the seeds for these matches, the settings
for logging into files, and the number of threads on which matches will be played in
the game runner.

Figure 3.1: Game Runner

3.3. GUI 15

3.3 GUI

It is possible to play the game using a GUI written in Unity (human vs. AI agent) 3.2.
It allows to learn the rules faster. Above all, it can be used for efficient debugging
of the written bot and easier observation of its game play. At the beginning, the
player needs to select an AI opponent, choose who starts first, set a time limit per
turn for the AI agent, and optionally add a seed value. During the game, the player
can see the AI agent’s cards, moves, and logs.

Figure 3.2: GUI

Chapter 4

Core Idea of the Agent

4.1 Focusing on our turn

It is hard to predict what cards we will draw in the next round due to the number of
cards in our deck, especially in the later stages of the game. It is even more difficult
to predict the opponent’s cards and moves for the next turn. Taking all this into
account, it is very difficult to prepare any plan for our next turn. We decided to
focus on playing the current turn optimally and maintaining a good deck.

4.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [3, 4] is a tree search-based algorithm used in
situations where a complete search of the game tree is too costly. It builds only part
of the tree, focusing its expansion on more promising parts. The size of the final tree
depends on the time given to the algorithm. The algorithm performs the following
four steps until it runs out of time:

• Selection – starting from the root, go to the leaf, selecting children along
the way using the given policy (in our case, the UCB1 formula to balance
exploration and exploitation).

• Expansion – add a new node to the tree.

• Simulation -– evaluate the state. We decided to finish the turn by performing
random moves and evaluating the game state after our turn using a heuristic
evaluation function.

• Backpropagation – update scores along the chosen in-tree path.

17

18 CHAPTER 4. CORE IDEA OF THE AGENT

4.3 Board evaluation

Since we used MCTS to select moves in our turn, the evaluation function was needed
to score the position at the end of our turn. There were many things to consider:
prestige, patrons’ favour, our deck, the opponent’s deck, and the board. When
evaluating a deck, we took into account the quality of the cards we had and the
potential for combos. When evaluating the board, we took into account the agents
on board and cards in the tavern (punishing when they are good for the opponent).

Creating a good evaluation function is a key to developing a good agent. Even if
MCTS allows us to perform a complete search and calculate an accurate solution, a
bad evaluation function would rate poor states better than good ones. More details
related to this topic are described in the next chapter.

Chapter 5

Main Challenges

5.1 Branching factor

The branching factor is the average number of children of a node in the game tree.
If we want to search the tree at a depth equal to k and our branching factor is d,
we would have to search over dk nodes. Minimising the branching factor is critical
for efficient tree search.

5.1.1 Problem

This game, especially in the later rounds, has a high branching factor due to the
large number of moves we can make, such as selecting which card to play, which
patron to call on, or which card to buy. Cards like ”Return 3 cards of any type from
your cooldown pile to the top of your draw pile” or ”Destroy up to 2 of your cards
that are in play or in your hand from the game” result in the addition of dozens of
children.

5.1.2 Solution

Instant card play. The first improvement is that there are many cards that
can be played immediately at the beginning of a turn, for example ”Gain 1 coin”.
Implementing instant moves shrinks search space massively. It removes all paths
where this card is played after some complicated moves. Let us assume, for example,
that at the beginning of a turn we have 3 cards that can be played immediately and
2 cards with non-trivial effects. Then, instead of considering all 5! possibilities to
play them, we consider only 2 (at the beginning, we play these 3 cards, and then
the remaining two in 2 ways).

19

20 CHAPTER 5. MAIN CHALLENGES

Treasury. The second improvement comes with the Treasury (which replaces one
of the played cards with a Writ of Coin (WoC)). The only cards that we would like
to exchange are those that are worse than WoC, of course. Luckily for us, there are
not many cards like that, and moreover, we do not want to consider all repetitions
of the same card (for the engine, these are different actions because every card has
its UniqueId), so when calling on Treasury, we consider only starter cards without
repetitions. It helps to shrink the search space to 1–2 possibilities from 5+.

Effects, which manage our deck. The third improvement is when it comes to
the effect ”Return up to k cards from the cooldown pile to the draw pile”. Cards
with this effect have k up to 3, but the size of the cooldown pile can be big. Suppose
we have n cards in our cooldown pile. There are

(n
k

)
possibilities (picking order

does not matter). We decided to choose the best k + 2 cards according to our card
evaluating function (more details in the next sections) and only from those cards
add all

(k+2
k

)
possibilities. When we take some real values like n = 10 and k = 3,

we reduce from
(10
3

)
= 120 to

(5
3

)
= 10 possibilities. When it comes to the effect

”Destroy up to n cards in play”, we do the same, but instead of picking the best
ones, we pick the worst ones.

MCTS Solver. This improvement [5] is not necessarily about branching factor
by definition, but it greatly improves search efficiency by reducing redundant com-
putations. We remember in every node if its subtree is entirely calculated, and if so,
we do not take this node into account in the MCTS selection process.

5.2 Non-deterministic game state transitions

Playing a move that results in drawing cards or obtaining a card from the tavern
creates a random event (e.g., what cards are drawn or what card is inserted in place
of the previous one in the tavern).

5.2.1 Problem

The problem is that our MCTS works on one seed, so we are analysing only one
possible outcome of a random event. It can lead to disaster because MCTS may
assume that the outcome of a random event is very promising, but in reality it may
not be true, or the other way around.

5.3. TIME MANAGEMENT 21

5.2.2 Solution

We had two approaches to this problem:

Open-loop MCTS. Open-loop MCTS [6] differs from the standard one (closed-
loop) in the way it looks at nodes. In an open-loop MCTS, nodes are represented by
the sequence of moves that led to them, not their current state. The upside of this
approach is that in every run we simulate the game from root (and because of that,
we can create a new SeededGameState with a new random seed). The downside
is that it has less accuracy due to keeping a sequence of moves instead of states.
Scoring nodes is harder and also less accurate because one node in open-loop MCTS
can refer to very distinct states (with a different real score).

Parallel MCTS. Instead of one MCTS, we proposed to run a few of them, like
in root parallelization [7], but in our case with different seeds. When selecting a
single move, we choose the one for which the average result is the highest. This does
not completely eliminate the problem, but it reduces the probability of making a
huge mistake. With several MCTS trees, we need to manage the time between them
(not necessarily equally; the result then should be equal to the weighted average).
Individual MCTS calculations will be less accurate, but overall, this change allows
for a more accurate estimation of the results of random moves. One more possible
improvement to this approach is to reject around 20% of extreme values. It will
eliminate super-lucky or super-unlucky events that influence our average move score.
We reuse these trees unless reality does not match our predictions.

The second approach performed significantly better in our tests, and because of
that, we decided to continue with it (however, we believe in the open-loop approach
and will try to investigate it further before the competition). One reason why parallel
MCTS trees performed better is that we could use the MCTS Solver (because single
MCTS has established seed and is deterministic).

5.3 Time management

In AI agent competitions time management is very important, especially when it
comes to the simulation-based algorithms.

5.3.1 Problem

The game has a limit of 10 seconds per turn. Each turn consists of several of our
moves. Due to random events, we would like to recalculate the MCTS after each
such move, as there is a high probability that we have not guessed the random move

22 CHAPTER 5. MAIN CHALLENGES

correctly. The question is how to manage the given time so that we have enough
until the end of the turn without wasting it.

5.3.2 Solution

We created a function that predicts how many moves will be played in our turn. It
simulates a few runs of our turn and takes the maximum number of played moves.
Before running the MCTS, we calculate how much time we should run it according
to the given formula: time left

number of predicted moves+1 . When we are low on time, we switch
from a few MCTS trees to just one.

5.4 Creating evaluation function

As mentioned above, a good evaluation function is a key part of our agent’s per-
formance. We set the interval for our evaluating function for [−10 000, 10 000] and,
for MCTS purposes, scale it to [0, 1]. There are a few things we considered. The
exact values of constants and tier lists used in the next paragraphs are listed in the
appendix. Their names are written in camel case.

Patrons. We assigned different weights to different patrons depending on their
status. The exact values of weights are in the appendix, but below we presented the
main ideas behind them.

The Duke of Crows is a powerful game-ending patron. It converts coins into
power, so we can gain a lot of prestige in one turn. The activation of this patron is
only available when it does not favour us. Because of that, we assigned him negative
weight when favouring us and positive weight when favouring the enemy.

Ansei gives passive income when it favours a player, so we obviously give a
positive score when favouring us and a negative score when favouring the enemy.

For other patrons, we decided not to score them because their effects do not
depend on their status. Activating these patrons influence on the evaluation function
by applying their effects, as, for example, we reward putting good agents on the top
of the draw pile (which is Saint Pelin’s effect).

Deck. We use a tier list of cards to evaluate our deck and the opponent’s deck.
The tier list assigns each card a certain weight depending on the current phase of
the game. Since combos provide many useful effects and resources, we also added
bonuses for the number of cards from the same patron’s deck according to the
formula: (number of patron cards)ComboPower . We also penalise when the deck con-
sists of too many cards; as the number of cards exceeds the card limit for the
current game phase, bonuses from single cards are multiplied by CardLimit

number of cards , and

5.4. CREATING EVALUATION FUNCTION 23

bonuses from combos are calculated using the following formula: (CardLimit
number of cards ×

number of patron cards)ComboPower .

We use another tier list to evaluate cards we choose after playing a card with
the effect ”Return up to n cards from cooldown pile to the top of the draw pile”.
The reason we used that tier list is because it evaluates the pure strength of cards,
not their cost or game phase, as in the first tier list.

Prestige. To evaluate the prestige difference, we use the formula: (our prestige −
enemy prestige)× PrestigeValue.

Board. To evaluate the board, we use the agent tier list, which, like the card tier
list, gives us information about the strength of the agents depending on the phase of
the game. To evaluate enemy agents, we used the formula: Tier [agent , game phase]×
EnemyAgentValue × agent ′s current HP+2

agent ′s max HP+2 . We wanted to take into account the agent’s
current HP, but remembering at the same time that an agent even with 1 HP is still
a strong card, that is what these +2 stand for (for example, an agent with 1 HP
and a maximum of 6 is multiplied by 1+2

4+2 = 1
2 not by

1
4).

As for our agent, we calculate their value the same, but then minimise it with
(current HP)×PrestigeValue×OurAgentValue, because the cost to destroy our agent
for the opponent is our agent’s current HP in power (which turns into prestige at
the end of the turn). OurAgentV alue is a constant slightly greater than 1, because
it is, of course, an inconvenience for the enemy to take care of our agents.

Tavern. To evaluate cards in the tavern, we calculate which cards are good for the
opponent’s deck and penalise leaving them in the tavern. To calculate the strength
of the card, we calculate enemy deck power with and without the given card, and
its value is the difference. Then we calculate the penalty with the following formula:
Tier [card , game phase]× TavernPenalty .

We also penalise leaving in tavern contract action, which allows to knock out
enemy agents when we have agents on the table. Suppose on the table there is a
card to knock out two enemy agents. Then we calculate scores for our two best
agents and only count 25% of their original value, as the opponent can easily kill
them.

5.4.1 Game phases

We observed that the optimal weights change noticeably depending on the current
phase of the game. This also applies to the tier lists, as some cards are good in the
early game but useless later on. Others, on the other hand, are not worth buying
too early.

24 CHAPTER 5. MAIN CHALLENGES

We decided to choose the phase of the game at the start of each turn based on
our and the enemy’s prestige:

• If our prestige is bigger than 26 or the enemy’s prestige is bigger than 29, it is
late game.

• If our prestige is less than 11 and the enemy’s prestige is less than 14, it is
early game.

• In other cases, it is mid game.

Early game. In the early game, we almost do not care about prestige. On the
other hand, cards bought in this phase will be with us all along, so their value is
high as they will be drawn several times. Mainly, cards with big resource income
effects are good to buy in order to afford more expensive cards in upcoming turns.

Mid game. In the middle phase of the game, when our deck is already quite
developed, we can switch a bit from building the economy to buying cards with
more interesting effects to try to get the upper hand over the opponent in terms of
economy and prestige (but it is still not the biggest priority).

Late game. In the late game, our main priority is to gain prestige to win the game.
Our deck is developed, and we usually do not want to buy new cards because, due
to the short time until the end of the game, they probably will not be used anyway.

5.4.2 Adjusting weights using evolutionary algorithm

Coming up with well-adjusted weights on your own is hard, so we created some
starting weights using our knowledge of the game and ran an evolutionary algorithm
to obtain better ones. An evolutionary algorithm consists of an initial population
choice and a main loop with three steps:

• Evaluate fitness – judge how good individuals are in the population by com-
paring them against each other.

• Reproduction – select a set of individuals to be the parents of the next gener-
ation (often the fittest ones).

• Crossover and mutation – parents create children by combining their proper-
ties. Children can mutate by changing weights from crossover a little bit.

5.4. CREATING EVALUATION FUNCTION 25

We performed these steps as follows:

First generation. The first generation was created by mutating the initial weights
we assigned. Each parameter was multiplied by a random value from the interval
[0.5, 1.5] with a probability 70%.

Evaluate fitness. The number of games each individual won against the best one
from the previous generation determined its rating. The second generation fought
the bot with initial parameter values.

Reproduction. The parents of the next generation consisted mainly of the fittest
individuals. To avoid creating generations with similar parameter values, we also
added some weaker individuals (around 15% of the parents).

Crossover and mutation. 70% of the new generation was created by randomly
choosing two parents and combining them using the standard one-point crossover.
Then, we multiplied each of its parameters by a value from the range [0.95, 1.05]
with 40% probability. The two best individuals from the current generation are also
added to the new generation, and the rest of the next generation was created by
mutating randomly chosen parents (each parameter was multiplied by a value from
the range [0.8, 1.2] with 30% probability).

Chapter 6

Experiments

6.1 Multiple MCTS trees

We run fights between agents using a different number of MCTS trees; their results
can be seen in Table 6.1. As the table shows, increasing the number of MCTS trees
helps to increase the average number of wins. However, more parallel trees result
in a shallower search, as the turn’s time constraint does not allow for adequate
expansion.

versus 1 MCTS 3 MCTS 5 MCTS 10 MCTS

1 MCTS - 51± 4.11% 55.5± 4.09% 57.75± 4.06%

3 MCTS 49± 4.11% - 54± 4.10% 54± 4.10%

5 MCTS 44.5± 4.09% 46± 4.10% - 47± 4.1%

10 MCTS 42.25± 4.06% 46± 4.10% 53± 4.1% -

Average 45.25± 2.36% 47.67± 2.37% 54.17± 2.37% 52.92± 2.37%

Table 6.1: Results against agents using different numbers of MCTS after 400 games,
with their 90% confidence intervals

6.2 Evolving parameter weights

The Figure 6.1 shows the results of our agent using the parameters calculated by the
evolutionary algorithm. It was tested every 20 generations against the best baseline
bot – MCTSBot. The evolutionary algorithm has done its job, increasing the win
ratio from below 70% to above 80%.

27

28 CHAPTER 6. EXPERIMENTS

0 50 100 150 200
50

60

70

80

90

100

Number of generation

W
in
ra
ti
o
[%
]

Average

As first player

As second player

Figure 6.1: Win ratio depending on generation number after 200 games on each side

6.3 Results against agents from the SoT engine

Finally, we tested our final bot against the baseline bots provided by the SoT authors.
As shown in Table 6.2, our agent has no problem defeating the strongest agents in-
cluded in the SoT engine. Despite the fact that agents DecisionTreeBot, MCTSBot,
BeamSearchBot in battle against each other performed similarly [1], MCTSBot oc-
curred to be the toughest rival for our agent.

Our agent Decision Tree MCTS Beam Search

First player 96± 1.61% 87.5± 2.72% 95.5± 1.70%

Second player 90± 2.47% 74± 3.61% 81.5± 3.19%

Average 93± 1.48% 80.75± 2.29% 88.5± 1.86%

Table 6.2: Results against the best agents provided in SoT after 400 games with
their 90% confidence intervals

Chapter 7

Conclusions

The main goal of our thesis was to create an AI agent playing Tales of Tribute. In
the thesis, we described how the AI agent was created and what techniques we used.
We also described how Monte Carlo Tree Search can be used to search through
the game tree and how we improved its performance. Furthermore, in order to
develop a decent evaluation function, we used an evolutionary method to improve
its parameters. The thesis also discusses the key difficulties we encountered and how
we overcame them. Finally, we created the AI agent that is ready to compete in the
first Tales of Tribute AI Competition at the IEEE Conference on Games 2023, and
we are looking forward to good results.

29

Bibliography

[1] Dominik Budzki, Damian Kowalik, and Katarzyna Polak. Implementing Tales
of Tribute as a Programming Game. Engineer’s thesis, University of Wrocław,
2023.

[2] Jakub Kowalski, Radosław Miernik, Katarzyna Polak, Dominik Budzki, and
Damian Kowalik. Introducing Tales of Tribute AI Competition. arXiv preprint
arXiv:2305.08234, 2023.

[3] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas,
Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon
Samothrakis, and Simon Colton. A Survey of Monte Carlo Tree Search Methods.
IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43,
2012.

[4] Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk.
Monte Carlo Tree Search: a review of recent modifications and applications.
Artificial Intelligence Review, 56(3):2497–2562, 2022.

[5] Mark H. M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte-Carlo
Tree Search Solver. In Computers and Games, pages 25–36, 2008.

[6] Erwan Lecarpentier, Guillaume Infantes, Charles Lesire, and Emmanuel
Rachelson. Open Loop Execution of Tree-Search Algorithms, extended version.
27th International Joint Conference on Artificial Intelligence (IJCAI 2018),
2019.

[7] Guillaume M. J. B. Chaslot, Mark H. M. Winands, and H. Jaap van den Herik.
Parallel Monte-Carlo Tree Search. In Computers and Games, pages 60–71, 2008.

[8] Jakub Kowalski and Radosław Miernik. Evolutionary Approach to Collectible
Card Game Arena Deckbuilding using Active Genes. In IEEE Congress on
Evolutionary Computation, pages 1–8, 2020.

[9] Rules of Tales of Tribute. https://www.elderscrollsonline.com/en-
us/news/post/62081. [access: 18.06.2023].

31

32 BIBLIOGRAPHY

[10] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University
Press, 1996.

[11] Maciej Świechowski and Jacek Mańdziuk. A Hybrid Approach to Parallelization
of Monte Carlo Tree Search in General Game Playing. In Challenging Problems
and Solutions in Intelligent Systems, pages 199–215. 2016.

Appendix A

Constants

In Table A.1, we listed the constant values used by our agent.

Constant name Early game Mid game Late game

Crow 357.165 401.261 439.462

Ansei 69.727 65.175 51.416

PrestigeValue 14.407 115.438 244.106

CardLimit 3.584 9.803 6.175

ComboPower 1.453 2.018 1.765

OurAgentValue 2.407 1.205 0.628

EnemyAgentValue -36.382 -31.121 -165.216

UpcomingCard 14.453 10.997 96.387

TierMultiplier 32.456 15.362 17.865

TavernPenatly -1.019 -1.624 -1.843

KnowingCardCombo 0.986 1.268 1.880

After40Bonus 469.629 562.802 436.450

Table A.1: The values of constants

The constant Crow is multiplied by -1 if the patron favours us (because we
cannot call on it until the opponent changes its status), by 0 if it is neutral, and by
1 if the patron favours the opponent (because they cannot call on it until we change
its status). The constant Ansei is multiplied by -1 if the patron favours the enemy
(because the opponent has passive income), by 0 if it is neutral, and by 1 if the
patron favours us (because we have passive income).

The description of constants unmentioned before:

• UpcomingCard – bonus for cards on the top of the draw pile (if they were
placed there using a card with the effect ”Return up to n cards from the

33

34 APPENDIX A. CONSTANTS

cooldown pile to the top of the draw pile” or by calling on Saint Pelin). Cards
are evaluated using tiers listed in Table B.1 in the column ”From cooldown”
and multiplied by UpcomingCard.

• TierMultiplier – multiplier of card tiers from the card tier list (in the card tier
list, cards have different tiers B.1 and tiers have different values B.2). Its goal
was to improve the ratio of card values to other factors.

• KnowingCardCombo – combo potential bonus for cards on top of the draw
pile. For each of these cards, we add the number of cards we own from the
same deck and multiply by this constant.

• After40Bonus – additional bonus for each prestige point over 40.

Appendix B

Tier lists

B.1 Card tier list

Card name Early game Mid game Late game
From
cooldown

Currency Exchange S S A HB

Luxury Exports S S C HD

Oathman A A B HD

Hlaalu Councilor A A C HS

Hlaalu Kinsman A A C HS

House Embassy A A C HS

House Marketplace B A C HA

Hireling C C D HD

Hostile Takeover B C D HD

Customs Seizure D D D HD

Goods Shipment D D D HF

Midnight Raid S S S HB

Hagraven D B D HB

Hagraven Matron D A C HA

War Song D D D HF

Blackfeather Knave S S A HB

Plunder S S S HS

Toll of Flesh S S A HC

Toll of Silver S S A HC

Murder of Crows S S A HA

Pilfer A S A HB

Squawking Oratory A S A HA

Pool of Shadow B A B HC

Scratch A A B HD

35

36 APPENDIX B. TIER LISTS

Blackfeather Brigand C C C HD

Blackfeather Knight A B C HB

Peck C C C HF

Conquest A A B HC

Hira’s End S S S HS

Hel Shira Herald B A B HS

March on Hattu A A A HS

Shehai Summoning B B B HS

Warrior Wave S A B HB

Ansei Assault B A B HA

Ansei’s Victory B A B HS

No Shira Poet C C C HC

Way of the Sword D D D HF

Rally A S A HA

Siege Weapon Volley A S B HC

The Armory A S A HB

Banneret A S A HS

Knight Commander S S A HS

Reinforcements S A B HD

Archers’ Volley B A B HD

Legion’s Arrival A A B HD

Bangkorai Sentries C B C HA

Knights of Saint Pelin C A C HA

The Portcullis C C D HD

Fortify D D D HF

Bewilderment F F F HF

Grand Larceny A A B HC

Jarring Lullaby B A B HC

Jeering Shadow C C C HE

Pounce and Profit S S B HC

Prowling Shadow B C C HB

Shadow’s Slumber A A B HB

Slight of Hand A B D HF

Stubborn Shadow D C D HD

Twilight Revelry B A B HC

Swipe D D D HF

Gold E F F HF

Writ of Coin WOC B E HF

Table B.1: Card tier list

B.2. AGENT TIER LIST 37

Card tier Value

S 50

A 30

B 15

WOC 10

C 3

D 1

E 0

F -3

HS 5

HA 4

HB 3

HC 2

HD 1

HE 0

HF -1

Table B.2: Values of card tiers

B.2 Agent tier list

Agent name Value

Oathman C

Hlaalu Councilor S

Hlaalu Kinsman S

Hireling C

Clan-Witch A

Elder Witch A

Hagraven A

Hagraven Matron A

Karth Man-Hunter B

Blackfeather Knave B

Blackfeather Brigand B

Blackfeather Knight B

Hel Shira Herald B

No Shira Poet C

38 APPENDIX B. TIER LISTS

Banneret S

Knight Commander S

Shield Bearer B

Bangkorai Sentries B

Knights of Saint Pelin A

Jeering Shadow C

Prowling Shadow B

Stubborn Shadow C

Table B.3: Agent tier list

Agent tier Value

S 5

A 4

B 3

C 2

Table B.4: Values of agent tiers

	Introduction
	Tales of Tribute
	Game rules
	Cards effects
	Win conditions

	Scripts of Tribute
	Implementing a bot
	Game Runner
	GUI

	Core Idea of the Agent
	Focusing on our turn
	Monte Carlo Tree Search
	Board evaluation

	Main Challenges
	Branching factor
	Problem
	Solution

	Non-deterministic game state transitions
	Problem
	Solution

	Time management
	Problem
	Solution

	Creating evaluation function
	Game phases
	Adjusting weights using evolutionary algorithm

	Experiments
	Multiple MCTS trees
	Evolving parameter weights
	Results against agents from the SoT engine

	Conclusions
	Bibliography
	Constants
	Tier lists
	Card tier list
	Agent tier list

