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Abstract

We develop a method of adapting the AlphaZero model to
General Game Playing (GGP) that focuses on faster model
generation and requires less knowledge to be extracted from
the game rules. The dataset generation uses MCTS playing
instead of self-play; only the value network is used, and at-
tention layers replace the convolutional ones. This allows
us to abandon any assumptions about the action space and
board topology. We implement the method within the Regular
Boardgames GGP system and show that we can build models
outperforming the UCT baseline for most games efficiently.

Introduction
General Game Playing (GGP) is an Artificial Intelligence
challenge focused on developing an autonomous game-
playing agent that can play, without human intervention, any
game given its rules (Genesereth, Love, and Pell 2005). Such
a task requires a proper formalism to encode a possibly large
class of games in a machine-processable and simultaneously
human-readable way. Several such formalisms were devel-
oped, Stanford’s Game Description Language (GDL) (Gene-
sereth, Love, and Pell 2005) being arguably the most famous
and deep-researched, providing a great domain for testing
AI algorithms, especially Monte Carlo Tree Search (MCTS)
with UCT (Browne et al. 2012). A newer approach, focusing
on more efficient game processing, is Regular Boardgames
(RBG) (Kowalski et al. 2019), which encodes game rules
as regular expressions. A natural path of GGP research is
to apply Neural Networks (NN) and Deep Reinforcement
Learning (DRL).

The most famous NN-based approach that was advertised
as general was AlphaZero (Silver et al. 2018), applying the
same learning algorithm for Go, Chess, and Shogi. However,
although the proposed method really generalizes (at least
among two-player, zero-sum board games), the network ar-
chitecture had to be manually prepared for each game, which
is inconsistent with the pure GGP principles. A clone of Al-
phaZero, based on GDL and aimed to resolve some of these
restrictions, was presented in (Goldwaser and Thielscher
2020). MCTS-based DRL approach for Ludii GGP system,
created via a bridge to Polygames can be found in (Soemers

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2021). Deep Reinforcement Learning using only value
networks combined with a variant of Unbounded Minimax
is described in (Cohen-Solal and Cazenave 2023).

We address some issues that appear in the GGP context
and focus on training within a short time limit and further
restricting assumptions about the given game rules.

Our Method
We adapted AlphaZero to the RBG framework and we focus
on two-player zero-sum games, but the proposed method is
limited only by the requirement of perfect information. Our
modifications focus on the following areas:

Action space. The original AlphaZero approach requires
the knowledge of action space, which must be either defined
manually or inferred from the game rules (in GGP). There
are two issues. First, the action space depends on a particular
game encoding, and one game can have many implemen-
tations. Second, since tensors generally must have a fixed
shape, games with a huge action space are particularly prob-
lematic, even if they have a small branching factor. The sec-
ond problem could be alternatively addressed by splitting
actions into elementary fragments (Kowalski et al. 2022),
yet this may lose heuristic information of actions.

To address these problems, we omit the policy network
and attempt to use only the value network, abandoning any
dependence on the action space. Thus, we use the standard
UCT formula instead of the PUCT (Rosin 2011), a variant
of the UCT algorithm that uses a predictor to provide recom-
mendations about the order of actions during exploration.

Board topology. Another piece of information that must
be extracted from game rules is the neighborhood of board
tiles, which is necessary for the standard convolutional ap-
proach. In GGP, extracting such information from the game
description requires additional effort and is not always reli-
able. There is no guarantee that the games will have natural
board topology, especially for non-rectangular topologies, or
even the descriptions can be intentionally obfuscated. Also,
the natural board topology does not guarantee that adjacent
cells are, by definition, the most correlated ones.

To avoid assumptions, we propose using an attention-
based NN (Vaswani et al. 2017). The model creates a (si-
nusoidal or learned positional) embedding for each tile and
passes them through the encoder layers. This allows the net-
work to learn the relations between tiles without any game-



Game Board size
Ordered board Permuted board

Attention NN Convolutional NN Attention NN Convolutional NN
vs. 1× vs. 10× vs. 1× vs. 10× vs. 1× vs. 10× vs. 1× vs. 10×

Breakthrough 36 (6× 6) 99%±1.1 94%±2.4 99%±0.8 98%±1.4 99%±0.7 93%±2.5 97%±1.7 93%±2.5
Breakthrough 64 (8× 8) 83%±3.7 45%±4.9 88%±3.2 65%±4.7 85%±3.5 53%±4.9 77%±4.1 42%±4.8
Breakthrough 100 (10× 10) 51%±4.9 9%±2.8 47%±4.9 15%±3.5 17%±3.7 4%±1.9 4%±2.0 1%±0.8
Connect Four 42 (7× 6) 72%±4.3 57%±4.8 58%±4.8 53%±4.8 44%±4.8 37%±4.6 49%±4.9 42%±4.8
English Draughts 32 (8× 8) 86%±2.3 43%±3.3 85%±2.5 46%±3.4 77%±2.8 36%±3.1 80%±2.7 43%±3.3
Fox and Hounds 32 (8× 8) 91%±2.8 77%±4.1 93%±2.5 72%±4.4 87%±3.3 58%±4.8 94%±2.4 72%±4.4
Gomoku 225 (15× 15) 88%±3.2 38%±4.8 44%±4.9 39%±4.8 74%±4.3 14%±3.4 10%±2.9 7%±2.5
Hex 25 (5× 5) 83%±3.7 56%±4.9 85%±3.5 60%±4.8 79%±4.0 62%±4.8 86%±3.4 65%±4.7
Hex 49 (7× 7) 76%±4.2 49%±4.9 44%±4.9 22%±4.1 57%±4.9 34%±4.7 19%±3.9 8%±2.7
Hex 81 (9× 9) 10%±2.9 0%±0.5 2%±1.3 0% 4%±1.8 0%±0.5 0%±0.5 0%
Pentago 36 (6× 6) 82%±3.8 41%±4.8 94%±2.4 72%±4.4 70%±4.5 28%±4.4 80%±4.0 46%±4.9
Reversi 64 (8× 8) 88%±3.2 68%±4.5 88%±3.1 71%±4.4 84%±3.5 64%±4.6 63%±4.7 35%±4.6
The Mill Game 24 (8 + 8 + 8) 67%±4.3 36%±4.1 70%±4.2 40%±4.3 61%±3.9 34%±3.6 63%±4.4 34%±4.0

Total average 75% 47% 69% 50% 64% 39% 56% 38%

Table 1: The results of the NN agents with 600 iterations. The baseline opponent is UCT with 600 (1×) and 6,000 (10×)
iterations. The dataset for each game was gathered for at most 2h using 20 CPU cores. The 95%-confidence intervals are given.

Game Size of dataset (MCTS plays)
200 400 1,000

Generation time + Training time
Breakthrough (6× 6) 6s + 20s 11s + 20s 25s + 20s
English Draughts 1.1m + 20s 1.3m + 20s 3.5m + 40s
Reversi 1.2m + 20s 1.2m + 20s 3.5m + 40s

Attention NN
Breakthrough (6× 6) 4%±1.8 60%±4.8 74%±4.3

English Draughts 31%±2.9 42%±3.2 54%±3.3

Reversi 25%±4.2 22%±4.0 28%±4.3

Convolutional NN
Breakthrough (6× 6) 41%±4.8 48%±4.9 83%±3.7

English Draughts 42%±3.4 55%±3.5 60%±3.4

Reversi 6%±2.3 7%±2.4 21%±4.0

Table 2: Short training. The results of the NN agents with
600 iterations against UCT baseline with also 600 iterations.

specific knowledge, regardless of the order of the tiles in
the input. The presented method is the first application of
attention networks to GGP. To evaluate the potential of self-
attention, we propose comparing it with CNNs based on ran-
dom permutations of the input board tiles. Reordering the
tiles should eliminate the spatially local correlation, which
is assumed by default by CNNs.

Fast model generation To take advantage of the very fast
RBG reasoner and to vastly decrease training time, the train-
ing dataset is generated by playing games using standard
UCT MCTS agents (without NN). This approach provides
better quality samples than in the early stages of self-play
and allows gathering large amounts of data with limited re-
sources. It can be easily parallelized since MCTS plays can
be performed independently on CPU cores and do not re-
quire a GPU.

Experiments with Conclusions
We evaluated the trained NN agents by playing 400 games
(200 per side) against a standard MCTS agent with game
tree reuse. The results of the constant simulations limit are
presented in Table 1. Convolutional NN assumes that the
board fits within a quad, and the tiles are given in order. To
examine the robustness, we tested the behavior after obfus-
cating by permuting the tiles randomly (the same permuta-
tion used for both NNs). Overall, the attention NN has a sim-
ilar performance to the CNN, even if the order of board tiles
is random. The results vary a lot depending on the game,
especially on its size. Yet, they suggest the trend that atten-
tion is a better choice for larger games, which is particularly
visible in size variations of Breakthrough and Hex. It also
suffers a smaller win ratio drop on average on our game set
when the board is permuted (the mean drop is respectively
11% and 8% for attention NN vs. 13% and 12% for CNN).

Table 2 shows results after very short training. We used
smaller NNs here, trained on much less data (less than 3%
of the 2h dataset from Table 1). This experiment was in-
spired by (Goldwaser and Thielscher 2020), where in Break-
through, after just 400 selfplay games, the winrate close to
80% was achieved. To achieve a similar playing strength, we
needed about 1,000 MCTS vs. MCTS training plays. Thus,
our plays are of worse quality, but we can generate them
in less than a minute. Because of the RBG language effi-
ciency (Kowalski et al. 2020), in our experiments, optimized
Monte-Carlo playouts are much faster than NN evaluation.
Such a situation, causing time-based comparison to favor
pure MCTS, was not reported in GGP-related literature.

We conclude that knowledge of the action space and board
topology is not required for obtaining good models. The data
generated from MCTS plays in place of self-plays is still
useful; in some cases, it allows beating the baseline after
a few minutes of computing. Note that our research was fo-
cused on budget training, so the landscape could be different
in longer settings.
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