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Abstract—This paper concludes five years of AI competitions
based on Legends of Code and Magic (LOCM), a small Col-
lectible Card Game (CCG), designed with the goal of supporting
research and algorithm development. The game was used in
a number of events, including Community Contests on the
CodinGame platform, and Strategy Card Game AI Competition
at the IEEE Congress on Evolutionary Computation and IEEE
Conference on Games. LOCM has been used in a number of
publications related to areas such as game tree search algorithms,
neural networks, evaluation functions, and CCG deckbuilding.
We present the rules of the game, the history of organized com-
petitions, and a listing of the participant and their approaches,
as well as some general advice on organizing AI competitions for
the research community. Although the COG 2022 edition was
announced to be the last one, the game remains available and
can be played using an online leaderboard arena.

Index Terms—Strategy Card Game AI Competition, Legends
of Code and Magic, Collectible Card Games, AI Competition

I. INTRODUCTION

Currently, “grand challenges” for AI research are not limited
to classic boardgames like Chess, Checkers, or Go. While they
still attract wide attention because of their universal cultural
role, it has been shown that modern computer games may serve
as milestones for AI development as well. So far, presented
approaches that beat best human players in Dota 2 [1] and
StarCraft II [2], are one of the most spectacular and media-
impacting demonstrations of AI capabilities.

The accent is on game features that make designing suc-
cessful AI players especially difficult, e.g., large action space,
long term planning, imperfect information, and randomness.
One game genre containing all these features is Strategy Card
Games, also known as Collectible Card Games (CCGs). Be-
sides the usual AI challenge (successful game-playing), CCGs
have their own like deckbuilding and game-balancing [3].

In recent years, numerous research has been conducted in
this domain, assisted by a few related AI competitions. The
Hearthstone AI Competition [4], with the goal to develop the
best agent for the game Hearthstone [5] was organized during
IEEE Conference in Games in 2018, and the AAIA’17 Data
Mining Challenge: Helping AI to Play Hearthstone [6] was
focused on developing a scoring model for predicting win
chances of a player, based on single game state data.

In this paper, we summarize the Strategy Card Game
AI Competition (SCGAI) organized since 2019 at IEEE
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Congress on Evolutionary Computation and IEEE Conference
on Games. The competition is based on Legends of Code and
Magic (LOCM) [7] programming game, designed especially
for fair AI vs. AI matches. LOCM is a small implementation
of a CCG, and its advantage over the commercial CCG AI
engines is that it is much simpler to handle and thus allows
testing more sophisticated algorithms and quickly implement-
ing theoretical ideas. The Strategy Card Game AI Competition
competition aimed to play the same role for the Hearthstone
AI Competition as microRTS [8] plays for various StarCraft
AI contests [9]. That is, encourage advanced research, free of
drawbacks of working with the full-fledged game.

The last edition of the SCGAI Competition took place in
2022, and the goal of this publication is to summarize it as a
whole. We start with establishing its place in the context of
other CCG-related competitions, defining the characteristics
behind its uniqueness, and presenting related research based
on the LOCM game. We describe the rules of the game and
the course of its development, showing which aspects of the
game, and why, were updated during the contest’s lifespan.
We present a concise history of the competition, pointing out
the characteristics of each edition, and listing the approaches
taken by the competitors, in particular, the winners. Finally, we
share our thoughts and experiences related to the competition
that might be helpful to AI competition organizers in general.

II. RELATED RESEARCH

We shortly present a summary of CCG-related research (not
originating in LOCM and SCGAI), focusing on Hearthstone-
based ones; a game used for other academic AI competitions.

A. Hearthstone AI Competition

The Hearthstone AI Competition [4] was held three times,
from 2018 to 2020, at IEEE Conference on Games. Each year
it received between 30 and 50 submissions, divided between
two tracks. The Premade Deck Playing track required using
one of the decks prepared by the organizers: 6 decks were
known upfront, while an additional 3 were used only for the
final evaluation. The User Created Deck Playing track allowed
agents to prepare their own deck, where the contestants used
popular, user-created decks known to the Hearthstone players.

The competition was based on SabberStone – a Hearthstone
simulator written in C# .Net Core that claimed to implement,
as of 2019, when its development stopped, 98% of the base
cards from the game. Creating an agent required implementing



a C# class with a method that receives a game state and
returns an action to perform. The complexity was reflected
in a substantial time budget: 30 seconds per turn.

Winning strategies of the submitted agents were mostly
based on search algorithms: Rolling Horizon Evolution [10],
MCTS [11], Pruned BFS, or Dynamic Lookahead algorithm;
usually paired with a state evaluation function. For example,
the best agent of 2019 was based on Information Set MCTS
and sparse sampling [12]. Runner-up in 2018 used competitive
coevolutionary optimization for learning heuristic evaluation
function used in a greedy one-step look-ahead algorithm [13].

B. Hearthstone Data Mining Challenge

Another interesting, although a single-time event, was the
beforementioned Data Mining Challenge: Helping AI to Play
Hearthstone, organized at the International Symposium on Ad-
vances in Artificial Intelligence and Applications in 2017 [6].
It lasted less than two months and attracted 188 submissions.

The dataset provided to participants contained examples
of game states extracted from Hearthstone playouts between
random AI players. The goal was to predict the winning
probability of the first player based on game states and submit
their predictions to the Knowledge Pit competition platform
[14]. The training set given to the participants consisted of
3,250,000 game states. The test set used for final evaluation
contained 750,000 states, and the results on 5% of it were
known for the submitting contestants as a preliminary score.

All top-ranked classifiers used neural networks. The win-
ning solution used an ensemble over a few variants of con-
volutional neural networks [15]. The runner-up solution was
based on Logistic Regression combined with extreme gradient-
boosted decision trees and deep learning [16].

C. CCG Game playing

Although a variety of approaches were tried, most of them
took the form of MCTS [11] enhancements. The algorithm
seems to work well in such a stochastic, multi-action environ-
ment, although the size of the games inspires the development
of methods for reducing the action space [12]. Among many
improvements described in [17], Card-Play Policy Networks
can improve rollout quality and reduce their branching factor.

However, full rollouts are too noisy. Thus, search is usually
combined with some form of state evaluation based on expert
knowledge and heuristics [18] or neural networks [19].

A recent spectacular success in CCG AI is winning against
the top 10 human player of the official Hearthstone League in
China [20]. Its authors also won the last SCGAI edition; their
submission is briefly described in subsection V-C2.

D. CCG deckbuilding and game balancing

These are two important tasks closely related to each other.
As the goal of deckbuilding is to provide a combination of
cards that will be able to consistently win against a variety
of opponents, game balancing can be seen as a method of
ensuring that the set of such successful decks and strategies
will be sufficiently large and diverse.

Fig. 1: Draft phase in version 1.0 and 1.2 of LOCM. Available
cards are in the center. Above and under it are players’ decks’
statistics and their mana curves.

The usual approach for these tasks is to use some form
of evolution, treating cards as genes and decks as genotypes,
with evaluation based on playouts between AI agents using
these decks. These include standard evolutionary algorithms
[21], Evolutionary Strategies [22], MAP-Elites [23], [24]. An
example of multiobjective EA for game balancing focused on
finding overperforming cards can be found in [25].

An approach tailored to the arena game mode in LOCM,
extending EA with active genes to improve learning efficiency,
was described in [26]. Another study analyzes the influence
of representation and the choice of opponent used to test the
model on the quality of learned heuristics [27].

III. LEGENDS OF CODE AND MAGIC

LOCM is a CCG designed for AI research. In comparison to
real-world CCGs, it has only a handful of mechanics, and all
card effects are deterministic. While battling, the only source
of non-determinism is one’s deck order.

In total, there were three versions of the game used for
the competitions: 1.0, 1.2, and 1.5. Each version changed the
game in a backward-incompatible fashion, slightly increasing
the complexity. The detailed rules are described below.

For each version, the organizers provided an online arena
available on CodinGame as well as an offline Java referee and
two faster implementations of version 1.2 in Nim and Rust.
Additionally, the authors of [28], [29] implemented a set of
OpenAI Gym environments.

A. Version 1.0

Each match starts with a draft phase, where the players build
their decks in a fair arena mode. For 30 turns, they select one
out of three cards (both players share the same options). The
UI includes players’ decks’ statistics and their mana curve
(histogram of cards’ costs), as shown in Figure 1.

Next, the battle phase begins. Both players start with one
mana, used to play the cards. To account for the first player’s
advantage, the second player receives one additional mana
each turn, as long as they will not use all of it in one turn.
The UI of the battle phase is shown in Figure 2.



Fig. 2: Battle phase in version 1.0 of LOCM. Basic players’
info is on the left; their hands and the board are on the right.

Every player starts with thirty health, five runes, correspond-
ing to 25, 20, 15, 10, and 5 health thresholds, respectively.
When the player’s health reaches the threshold, the rune breaks
and grants an additional card draw for the next turn.

Each turn starts with increasing the max mana by one (up to
a maximum of 12), recharging mana, and drawing cards (one
plus additional draw), up to a maximum of 8 in hand. If there
are no cards to draw, the player loses a rune instead, and their
health is reduced to its threshold. After 50 turns, both decks
are considered empty.

Next, the player can play cards if they have enough mana,
attack with their creatures, and finally end their turn. The game
ends when at least one player’s health drops to zero or below.

Every card is either a creature or an item. The former can
be summoned on the board; the latter used on a target. All
cards share three basic attributes (attack, cost, defense), three
effects (bonus draw, own health gain, and opponent’s health
reduction), and a subset of keywords.

Keywords are creatures’ special abilities and take effect
when they battle. There are six of them: breakthrough (deal
excess damage to the opponent), charge (summoned creature
can attack immediately), drain (dealt damage heals the owner),
guard (must be attacked first), lethal (kills damaged creature
instantly), and ward (blocks all incoming damage once).

Creature cards stay on the board as long as their defense
is positive. Starting from the turn after they were summoned,
they can attack the opponent or their creatures once each turn.
While battling, both creatures attack simultaneously.

Item cards are subdivided into three colors: green, red, and
blue. Green items can be used on own creatures, increasing
their statistics and adding new keywords. Red items can be
used on enemy creatures, reducing their statistics and remov-
ing keywords. Blue items are similar to red, but additionally
can be used directly on the opponent.

B. Version 1.2

In contrary to Hearthstone, The Elder Scrolls: Legends have
two lanes, i.e., the board is split into two parts. And while
LOCM is based on the latter, version 1.0 had a single board of

Fig. 3: Battle phase in version 1.2 and 1.5 of LOCM. Contrary
to version 1.0, the board is now split into two lanes.

Fig. 4: Construction phase in version 1.5 of LOCM. The red
and blue numbers in the card’s top left and right corners
indicate how many copies of it each player picked.

size 6 to simplify the game. Version 1.2 changes that, splitting
the board into two lanes of size 3, as shown in Figure 3.

This not only changes the size and shape of the game
tree but also impacts the importance of certain keywords. For
example, creatures with Guard now protect only half of the
board, and the ones with Lethal have fewer targets.

C. Version 1.5

The main conclusion from versions 1.0 and 1.2 is that an
agent can achieve amazing results while hardcoding the entire
draft phase. This alone degenerated the game to a single phase.

Replacing the draft with a construction phase alone would
not solve this issue, as knowing all the available cards, the
agents could tackle the deck construction problem offline. That
is what happened in the Hearthstone AI Competition.

To overcome this problem, version 1.5 generates a new card
set for each match. It forces agents to generalize their play
style to all possible cards, including unbalanced ones. Some
can effectively win most matches instantly when played (e.g.,
a blue item dealing 99 damage with zero cost); others can be
useless (e.g., a red item dealing no damage with no keywords).
Both can be used to test agents’ deck construction capabilities.



Technically, the construction phase is a single, four second
long turn, where the agents are presented with 120 cards. They
can pick up to 30 cards, using at most two copies of each. In
the UI, cards are shown in three frames, as shown in Figure 4.

Version 1.5 also introduced a new Area ability. For creature
cards, it either added an extra copy on the same lane (Lane1
value) or the other lane (Lane2 value), if there is space for
it. For item cards, it either applied it to all creatures in the
target’s lane and side of the board (Lane1), or all creatures
on the target’s side of the board (Lane2). The default value
(Target) has no special behavior.

Finally, version 1.5 removed the runes mechanic completely,
as it was unreasonably complex for how it worked. In return,
players get to draw an additional card for every 5 health lost
in the previous round, preserving the aid while losing health.

IV. COMPETITION

A. Legends of Code and Magic on CodinGame (2018), v1.0

CodinGame is a challenge-based coding platform offering
(among others) tens of multiplayer bot programming games.
More than 25 programming languages, communication based
on standard input/output using game-specific text protocols,
and an in-browser coding environment allowed it to gather a
sizable agent programming community.

The first LoCM competition, based on version 1.0, was only
24 hours long (Sprint) and gathered 742 participants1. The
second one started two days later, lasted 30 days (Marathon),
and received 2174 submissions2.

The platform’s moderators, as well as the community it-
self, highly discourage open sourcing full agents’ code, and
these are not generally available. However, players share their
strategies and detailed information about their thought process
in so-called post-mortems on the platform’s forum3.

The draft phase was dominated by handcrafted or exper-
imentally adjusted heuristics that can be effectively imple-
mented as a fixed ordering of cards. As it is possible to
compete with everyone’s agent using a given game seed, many
players mimicked the top players’ ordering. Some players
explored applying a mana curve (balancing the number of
cards with a given cost) but with no significant benefits.

Handcrafted rule-based agents dominated the battle phase.
However, the best players employed variants of well-known
search methods like Minimax (few plys deep; alpha-beta and
heuristic pruning) and MCTS (depth-limited with a heuristic
cut-off). The most significant improvements reported by all
players were move ordering and pruning, and lethal (winning)
move detection.

B. Strategy Card Game AI Competition (2019-2021), v1.2

The competition was no longer ran on the CodinGame
platform, and thus the agent limitations changed. Most impor-
tantly, there are no programming language restrictions – the

1CodinGame Sprint, July 25, 2018
2CodinGame Marathon, July 27, 2018
3Legends of Code and Magic Feedback & Strategies

only requirement is compatibility with a UNIX-based system.
The memory limit got lowered (256MB; agents using 1024MB
or more were disqualified), and the time limit for the standard
battle turns got doubled.

To reduce the noisiness of the results, all players played
using a fixed number of randomly sampled decks ten times
on the same random seed, resulting in identical card ordering.
In such a setting, two deterministic agents would achieve the
same results in all ten games. Additionally, every match was
mirrored to account for the difference between being the first
or second player.

1) CEC 2019: The first competition received six submis-
sions, and all of them were notably stronger than the baselines
provided by the organizers. Four were rule-based agents with
a variety of heuristics; two performed a proper search. The
winner, Coac, based its battle phase on a minimax-like search
of depth three with alpha-beta and heuristic pruning, turned out
to be significantly stronger than all of the competitors (33%
higher win rate than the runner-up). The draft phase used a
fixed ordering of cards (the highest card was selected).

2) COG 2019: This competition received three new sub-
missions. The best one of them, ProphetCoac, was an attempt
to improve the previous competition’s winner by predicting
the opponent’s hand based on the cards seen during the draft
to reduce the branching factor. Ultimately it did not improve
but actually reduced the overall win rate, most likely due to
less time available for search.

3) CEC 2020: This competition received one update and
two new submissions. The former was Coac, changing the
card orderings solely, effectively improving the heuristics.

The new ReinforcedGreediness agent was the first to include
a neural network. For the draft phase, it used two networks,
one for each side, trained by self-play reinforcement learning.
For the battle phase, it used a best-first search with a heuristic
using Bayesian-optimized handcrafted features.

4) COG 2020: This competition received only one new
submission. In this edition, the last year’s agents were not
evaluated, resulting in a visible change in win rates – all
were lower. The top two agents from the previous competition
switched places, and an in-depth analysis suggests that all
agents beat the baselines almost every time while staying
relatively competitive (i.e., all agents were decent).

5) COG 2021: This competition received four new submis-
sions. One of them, DrainPower, had two variants – the default
and the aggressive one. Both shared the same static card
ordering for the draft and a flat simulation-based algorithm
but had different heuristic parameters. This agent took the first
two places, with the aggressive version being slightly better.

C. Strategy Card Game AI Competition (2022), v1.5

As the draft phase was replaced with a deck construction
one and a new area effect was introduced, the game protocol
did change, and thus all of the previously submitted agents
were no longer compatible. Similarly, fixed card orderings are
no longer usable, as the cards are now randomly generated for
each match.

https://www.codingame.com/contests/legends-of-code-and-magic/leaderboard
https://www.codingame.com/leaderboards/challenge/legends-of-code-and-magic-marathon/global
https://www.codingame.com/forum/t/legends-of-code-magic-cc05-feedback-strategies/50996


To let agents perform an in-depth analysis of the cards, the
first turn is four seconds long; this is the same as the whole
draft phase before. Other limits were not changed.

The organizers provided only a Java-based referee, updated
the CodinGame environment, and the community updated the
existing OpenAI Gym environments.

1) COG 2022: This competition was dominated by neural
network-based agents – four of six submissions had one. Two
of them were trained using Proximal Policy Optimization and
the other two using other reinforcement learning algorithms.

V. PLAYERS

There were 22 unique agents submitted in total. Based on
the main algorithm used for playing, we divided them into
three groups – search-based, neural network-based, and other.
Interestingly, most agents in every group have a similar perfor-
mance characteristic, e.g., they use a similar amount of time
and memory while playing. Three baseline agents provided by
the organizers are described in a dedicated subsection.

A. Baselines

The provided baseline agents were built with two goals in
mind: presenting the game rules and providing a better training
opponent than a fully random one. They are fairly trivial and
rely on the game engine ignoring invalid actions.

1) Baseline 1: This agent, written in Python, was used for
the competitions running version 1.2 of the game. During the
draft phase, it focuses on selecting creature cards with Guard
keyword and falls back to the first card otherwise. For the
battle phase, it follows a rule-based algorithm focused on using
all cards in hand and on the board, attacking the opponent’s
first and their creatures next.

2) Baseline 2: This agent, written in Python, was used for
the competitions running version 1.2 of the game. During the
draft phase, it focuses on selecting creature cards with the
highest attack and falls back to the first card otherwise. For
the battle phase, it uses a one-pass algorithm, attacking the
opponent using all summoned creatures and summoning all
creatures from hand.

3) RandomWItems2lanes: This agent, written in Java, was
used for the competitions running version 1.5 of the game.
In the construction phase, it selects all cards at random. For
the battle phase, it uses all green items on its own creatures,
attacks the opponent (only creatures with the Guard keyword,
if there is any), summons all creatures, and finally uses all
items. All actions are targeted at random.

B. Search-based

Search-based agents were the most common and won all
competitions running version 1.2. All of them employed move
pruning either explicitly (certain actions were disallowed) or
implicitly (moves were generated out of ordered actions).
Similarly, most of them implemented lethal move detection.

Only some of the agents searched through the opponent’s
turn, and it is clear that while it is beneficial to do so, it
requires further pruning and heuristic evaluation to make it
feasible with the exploding branching factor.

TABLE I: Results of all Strategy Card Game AI competitions.
New and updated agents’ names are in bold. Baseline agents’
names are in italics.

Year Place Win rate Agent

IEEE CEC 2019
v1.2

1 94.22% Coac
2 58.93% UJIAgent2
3 50.64% AntiSquid
4 46.72% Marasbot
5 44.69% UJIAgent1
6 42.21% Conrisc
7 37.04% Baseline2
8 25.51% Baseline1

IEEE COG 2019
v1.2

1 89.88% Coac
2 87.84% ProphetCoac
3 59.50% Marasbot
4 54.44% UJIAgent2
5 45.04% AntiSquid
6 42.27% Fabbiamo
7 41.12% UJIAgent3
8 39.80% UJIAgent1
9 37.47% Conrisc

10 32.24% Baseline2
11 20.35% Baseline1

IEEE CEC 2020
v1.2

1 86.07% Coac
2 79.10% Chad
3 60.20% ReinforcedGreediness
4 58.62% ProphetCoac
5 55.79% Marasbot
6 53.70% UJIAgent2
7 45.44% UJIAgent3
8 43.42% AntiSquid
9 42.82% Fabbiamo

10 41.04% UJIAgent1
11 34.61% Conrisc
12 28.20% Baseline2
13 21.00% Baseline1

IEEE COG 2020
v1.2

1 79.99% Chad
2 74.68% Coac
3 59.49% OneLaneIsEnough
4 56.21% ReinforcedGreediness
5 16.70% Baseline2
6 12.94% Baseline1

IEEE COG 2021
v1.2

1 78.72% DrainPowerAggressive
2 77.96% DrainPower
3 75.51% Chad
4 71.77% Coac
5 59.01% OneLaneIsEnough
6 55.38% ReinforcedGreediness
7 37.53% LANE_1_0
8 27.17% Ag2O
9 23.56% Baseline1

10 21.83% Baseline2
11 21.62% AdvancedAvocadoAgent

IEEE COG 2022
v1.5

1 84.41% ByteRL
2 75.00% NeteaseOPD
3 67.57% Inspirai
4 42.04% MugenSlayerAttack1

5 41.09% USTC-gogogo2

6 38.60% Zylo
7 1.29% RandomWItems2lanes

1 MugenSlayerAttackOnDuraraBallV3
2 Variant “Zero_control”

1) AdvancedAvocadoAgent: This agent, written in Java,
was submitted for COG 2021. It uses a fixed card ordering
for the draft phase and a best-first search for battling. Weights
of the heuristic evaluation function were found offline, using
an MCTS-based search over the space of parameters.

2) Chad: This agent, written in Rust, was submitted for
CEC 2020 and described in [30]. It scores the cards using
weights computed with harmony search. The battle phase uses
MCTS with the opponent’s hand prediction.



3) Coac: This agent, written in C++, was submitted for
CEC 2019 and got updated the next year. For the draft phase,
it uses a fixed card ordering. For the battle phase, a Minimax-
like search of depth three (or less, if the time ran out or the
tree was too wide) with alpha-beta and heuristic pruning.

4) DrainPower: This agent, written in C#, was submitted
for COG 2021. Both phases base on heuristic card evalua-
tion. The battle phase uses a flat simulation-based algorithm,
simulating own turn and the opponent’s response. It has two
variants – default and aggressive – with different weights for
the heuristic evaluation function.

5) Fabbiamo: This agent, written in C++, was submitted
for COG 2019. During the draft, it follows a so-called mana
curve, i.e., it tries to maintain a reasonable number of cards
of the same cost. The battle phase uses a Minimax search of
depth four over own actions and depth one of the opponent’s.

6) LANE_1_0: This agent, written in Java, was submitted
for COG 2021. The draft phase follows a fixed card order-
ing. The battle phase uses a flat simulation-based algorithm,
simulating only its own turn.

7) Marasbot: This agent, written in C++, was submitted
for CEC 2019. It uses a heuristic evaluation function for both
phases and random sampling for the battle phase. It completely
ignores blue items.

8) OneLaneIsEnough: This agent, written in C++, was sub-
mitted for COG 2020. It uses a heuristic evaluation function
for both phases and a one-turn deep search, including the
opponent’s response, for the battle phase.

9) Prophet Coac: This agent, written in C++, was submit-
ted for COG 2019. It is a modification of the Coac agent,
including a tentative prediction of the opponent’s hand, based
on the cards seen during the draft phase and refined by the
already played cards.

10) UJIAgent3: This agent, written in Python, was submit-
ted for COG 2019 and partially described in [31]. It uses a
fixed card ordering for the draft phase. For the battle phase,
it uses Online Evolutionary Planning [32] where the genome
encodes a series of actions, and mutation only reorders them.

11) Zylo: This agent, written in Java, was submitted for
COG 2022. It uses a heuristic evaluation function for both
phases and a best-first search for the battle phase. Its param-
eters were tuned using an evolutionary algorithm.

C. Neural networks-based

Neural networks-based agents were less common in version
1.2 competitions but dominated the 1.5 one. While there was
no GPU available while playing, some were trained using one.

1) Ag2O: This agent, written in Python, was submitted for
COG 2021. The draft phase bases on card weights trained with
q-learning and takes card combinations into consideration. The
battle phase uses a best-first search guided by actions’ q-value.
The network composes of four dense layers using tanh as the
activation function between and at the end.

2) ByteRL: This agent, written in Python, was submitted
for COG 2022 and described in [33]. Interestingly, it uses
only one, end-to-end policy, trained using deep reinforcement

learning combined with optimistic smooth fictitious play. The
network architecture is rather complex and includes a Long
Short-Term Memory (LSTM) block.

The authors sent an additional version of this agent, adjusted
and trained for the 1.2 version of LoCM. It was compared
against all COG 2021 submissions and won by a large margin
(more than 20% higher win rate than the runner-up).

3) Inspirai: This agent, written in Python, was submitted
for COG 2022. Its construction phase uses a heuristic evalua-
tion function adapted from Coac and optimized using Bayesian
optimization. The battle phase uses a neural network trained
using Proximal Policy Optimization.

The network consists of a dense layer with ReLU activation
function, followed by another dense layer. On top of that, there
are two heads using attention [34] for card and target selection.

4) NeteaseOPD: This agent, written in Python, was submit-
ted for COG 2022. It uses two independent networks trained
using Proximal Policy Optimization, one for each phase.

5) ReinforcedGreediness: This agent, written in Python,
was submitted for COG 2021. The draft phase uses a neural
network learned by self-play reinforcement learning, trained
independently for both sides. The network consists only of
dense layers with a few different activation layers.

The battle phase uses best-first search limited to own turn;
the heuristic evaluation function is a linear combination of
hand-made features optimized using Bayesian optimization.

6) USTC gogogo: This agent, written in Python, was
submitted for COG 2022. There were two versions – one
using hyperparameters to control both construction and battle
phases and the other using model trained using reinforcement
learning. Only the latter was used for the competition.

D. Other
Other agents were the simplest, usually with a decently

sized set of handcrafted rules and heuristic evaluation func-
tions at their core. Due to their simplicity, most of them acted
instantly, within a few milliseconds per turn.

1) AntiSquid: This agent, written in Python, was submitted
for CEC 2019. During the draft, it selects cards using a fixed
card ordering, follows a mana curve, and prefers different
cards based on the already selected ones. For the battle phase,
it follows a rule-based algorithm, searching for the highest
scored sequences of moves.

2) Conrisc: This agent, written in JavaScript, was submit-
ted for CEC 2019. For the draft, it follows a heuristic evalu-
ation function. The battle phase uses a rule-based algorithm,
using all cards in a given order. It ignores all items.

3) MugenSlayerAttackOnDuraraBallV3: This agent, writ-
ten in Python, was submitted for COG 2022. During the
construction phase, it focuses on the cheapest cards with the
newly added area effect. For the battle phase, it follows a list
of predefined rules.

4) UJIAgent1: This agent, written in Python, was submitted
for CEC 2019. During the draft phase, it tries to gather a
predefined set of cards based on their type and cost. For the
battle phase, it follows a list of predefined rules ordered using
a heuristic evaluation function.



5) UJIAgent2: This agent, written in Python, was submitted
for CEC 2019. During the draft phase, it probabilistically tries
to gather a predefined set of cards. For the battle phase, it
samples 44 strategies and picks the one with the highest score.

VI. TAKEAWAYS FOR COMPETITION ORGANIZERS

While an AI competition is a challenge for the contestants,
it is also a challenge for the organizers to make it a successful
one [35]. It is unclear when a competition becomes successful,
but there are several things the organizers have to account for,
ranging from coming up with an interesting problem itself to
running the final evaluation.

A. Games as test beds

Modeling problems using games makes them more ap-
proachable for most people, especially when the game itself
exists (e.g., Hearthstone for the Hearthstone AI Competition)
or is a simplified version of one (e.g., LOCM for The Elder
Scroll: Legends, MicroRTS for StarCraft). Additionally, the
game’s player base is often an excellent source of battle-tested
playing strategies and their analyses.

As different games raise different problems, it is crucial to
maintain some variety. A new competition in a game genre
not seen before may bring relatively a lot of novel algorithms
or methods. Similarly, extending an existing game can revive
stagnated research or make a more versatile benchmark.

At the same time, new problems attract fewer contestants,
as they are usually less prestigious or not marketed enough.
Luckily, games are usually flexible, and it is often possible to
extend them in a backward-compatible way. That allows the
competition organizers to reuse the previous submissions.

B. Bootstrapping with CodinGame

The difference in the number of submissions between the
CodinGame and academia SCGAI competitions is almost
tenfold, while the game rules remained fairly similar across
all three versions. The CodinGame platform has a large and
vivid community; using it as an “incubator” of an academic
competition may be a great way of validating one’s idea.

It is important to emphasize that the CodinGame community
focuses on solving the problem (i.e., playing the game). It
does not necessarily imply novel algorithms or sophisticated
methods. Actually, the vast majority is the complete opposite:
highly optimized versions of well-known algorithms tuned for
a specific game or puzzle.

However, CodinGame has some limitations too – the game
engine has to be written in Java, the communication has to be
text-based, and the agents are evaluated in a highly restricted
environment (1 CPU core, 768MB of RAM, no GPU). On
top of that, the entire game can use at most 30 seconds of
summarized agents execution time.

C. Pushing for research

Arguably, all AI competitions should require submissions
to be documented. On the one hand, it helps the organizers to
compare and reason about them, without analyzing the source

code. On the other, it allows future contestants to learn from
and improve them, instead of starting from scratch. Ideally, all
agents would result in a paper.

In the first two years of the SCGAI competition, there were
two competitions each year. While it increases the visibility
and potentially brings more contestants in, it may result in the
opposite – instead of one competition with six submissions,
there will be two with three each. The SCGAI competition
partially solved this issue by automatically resubmitting past
agents for future competitions.

Marketing the competition among students may bring many
valuable submissions, usually well-documented ones. Some of
them will find participating more interesting than working on
an unrelated project, and thus become more involved. Such
projects can evolve into diploma theses and then papers.

Additionally, contestants can be encouraged with prizes. As
the organizers may not want to sponsor them themselves, they
can reach out to conference organizers. IEEE CIS sponsored
SCGAI competitions at both CEC and COG conferences.

D. Taming the randomness

Most real-life games, and so their toy-scale relatives, are
highly random. To ensure fair results, one can use the same
game seeds for all agent pairs (e.g., in LOCM, it results in
the same cards available during their games). Additionally, as
most agents are non-deterministic on their own, each game
seed can be used multiple times to average the result.

Similarly, most games are asymmetrical, giving one of the
players a visible advantage. To account for that, one can run
matches in all player configurations using the same game seed.

If a competition runs on multiple machines, or even on one
but in parallel, consider interleaving instead of concatenating
the results from across runs. Different agents can utilize the
CPU differently, leading to varying results depending on the
programs running in the background.

E. Hardware and software

Comparing all agents pair-wise using a reasonable number
of matches requires a notable amount of CPU time. Luckily,
most cloud providers (e.g., DigitalOcean) are keen to sponsor
research and related competitions at a small cost of mentioning
them or their services while presenting the results.

To let others reproduce the competition results, all of the
code used to run it should be published once it concludes. Most
importantly, all kinds of configurations and the dependencies
required by all agents should be well documented.

The same applies to the final results. Win rates and charts
are enough for a presentation, but organizers should be fully
transparent and share both the raw data and the scripts used
to aggregate it. As the intermediate results can be significant
in size, consider compressing them.

Automating the above points allows the organizers to focus
on the competition and the AI challenge itself instead of
building the infrastructure and tooling for every single contest.
The SCGAI repository meets all these criteria, presenting all
agents, tooling, and results in one place.



VII. CONCLUSION

This paper summarizes five years of Strategy Card Game
AI Competition – an AI programming challenge based on
Legends of Code and Magic, a small implementation of a Col-
lectible Card Game authored by Jakub Kowalski and Radosław
Miernik. Its novel fair arena mode stays in opposition to more
common collection-based deckbuilding and the simplicity of
rules allows search-based approaches to be more profound.
LOCM was first used in CodinGame 5th Community Contest
in 2018 and last at IEEE Conference on Games 2022.

To prevent stagnation and introduce rising levels of chal-
lenge, the game rules have been extended a few times during
this time. The academia-based editions of the contest gathered
22 challengers, coming with different approaches, from simple
rule-based solutions to search-based agents and ones applying
deep reinforcement learning. The game has been a base for a
number of publications concerning playing algorithms and the
deckbuilding problem.

We hope that this summary will serve as a reference point
for the competition and related achievements, as well as a
general source of knowledge about successful approaches and
types of challenges characteristic of the domain of CCGs. We
also hope that our observations and conclusions will be helpful
to other researchers (or companies) that plan to bring to the
AI community some new game-oriented challenges.

We especially look forward to the next competitions related
to (Collectible) Card Games, as the domain is so broad that
in all these years and competitions, it has been studied only
superficially, and there are still many challenges left [3]. One
new CCG-related contest we know about is Tales of Tribute
AI Competition [36], based on the deckbuilding card game
Tales of Tribute and advertised for IEEE COG 2023.

Currently, there are no plans to organize the SCGAI compe-
tition any further, so it is officially considered close. However,
thanks to CodinGame, all LOCM versions are available online
as bot programming games, and everyone can compete against
the agents available on the public leaderboards.
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