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Abstract—This paper presents a new AI challenge, the Tales
of Tribute AI Competition (TOTAIC), based on a two-player
deck-building card game released with the High Isle chapter
of The Elder Scrolls Online. Currently, there is no other AI
competition covering Collectible Card Games (CCG) genre, and
there has never been one that targets a deck-building game.
Thus, apart from usual CCG-related obstacles to overcome, like
randomness, hidden information, and large branching factor, the
successful approach additionally requires long-term planning and
versatility. The game can be tackled with multiple approaches,
including classic adversarial search, single-player planning, and
Neural Networks-based algorithms. This paper introduces the
competition framework, describes the rules of the game, and
presents the results of a tournament between sample AI agents.
The first edition of TOTAIC is hosted at the IEEE Conference
on Games 2023.

Index Terms—Collectible Card Games, Tales of Tribute, AI
Competition, Deck Building, Monte Carlo Tree Search

I. INTRODUCTION

Games were always used as a testbed for Artificial In-
telligence and as a domain where many new approaches
and algorithms were showcased [1]. Thus, game-based AI
competitions are an excellent opportunity to stimulate research
by tackling challenging problems within relevant and just fun
environments and with a pinch of competitiveness.

Minimax was a breakthrough for Chess [2], Temporal-
Difference Learning for Backgammon [3], Monte Carlo Tree
Search for General Game Playing [4], Deep Reinforcement
Learning for Atari 2600 games [5]; last two methods combined
for Go [6]. These grand achievements were accompanied by a
variety of other smaller developments and improvements in
algorithms related to games of different types. Each genre
requires a specific approach and pushes the limits of known
algorithms to meet the game style.

Collectible Card Games (CCG), e.g., Magic: The Gathering,
Hearthstone, Pokémon Trading Card Game, Yu-Gi-Oh!, are
characterized by their high complexity, large branching factor,
randomness, partial observability, and dynamic metagame [7].
They usually contain a vast amount of cards, and although only
a few are present in each match, the proper algorithm has to
consider the appearance of every one of them. Unlike classical
board games, each turn is complex, and consists of many
smaller actions that may influence what follow-ups would
be possible. Moreover, an action can have a nondeterministic
outcome, so even the task of computing a set of legal moves
for a single turn cannot be simply done at the turn’s start.

The usual source of randomness in the form of shuffled
piles of cards inherited from classical card games also applies.
Critical information is hidden from the player, including the
opponent’s hand, deck, and even own draws, so every action
is taken based on speculations, and its probability of success
has to be weighed. Last but not least, metagame allows one to
reason about the opponent’s strategy and possible plays based
on the knowledge of successful playstyle archetypes.

Usually, in games like Hearthstone, the deckbuilding phase
is not a part of the match but takes place before. Each player
prepares their deck using cards from their collection and play a
game with an already prepared (yet unknown to the opponent)
list. For example, in Hearthstone AI Competition [8], there
were two tracks: Premade Deck Playing, where agents were
forced to play decks prepared by the organizers, and User
Created Deck Playing, where the competitors had to pair
their agent with an arbitrarily chosen deck. Initial editions
of Strategy Card Game AI Competition [9] featured another
approach, arena mode, where the agent was forced to build a
deck before each match, within a repeated process of choosing
a single card out of three options. Although this scenario poses
some deckbuilding aspect on the agent, it is still a part that
is separated from the main play and can be relatively easily
scripted or even hardcoded.

In games like Dominion, which started an entirely new
subgenre of deck-building card games, things work differently
[10]. Each player begins with a small, predefined deck of cards
that they improve by purchasing cards from a common supply
that is randomized and varies from game to game. Thus, the
player’s deck is gradually built as the game progresses, with
every turn decision about which cards to buy, and knowing
that each owned card is usually used multiple times as the
deck rotates. This novelty shifts the players’ attention from
just using cards to proper deck management and usually puts
a heavier accent on long-term planning that has to be paired
with the flexibility to react to changes caused by randomness
or the opponent properly.

For this reason, we introduce a new CCG-based AI contest:
Tales of Tribute AI Competition. We believe it is a great addi-
tion to the set of currently available benchmarks, introducing
the right amount of novelty compared to the past ones, and that
it will become an opportunity to boost algorithm research in
an area where the human-vs-AI dominance is still not settled.



II. RELATED AI COMPETITIONS

Over recent years, two academic CCG-related competitions
were held that are important reference points for our challenge,
as we learned on their experience. Neither is still organized.

A. Hearthstone AI Competition

Hearthstone is a popular digital CCG that has a large
competitive scene. The Hearthstone AI Competition [8] was
held three times (2018–2020) at IEEE Conference on Games.
It has been well-received by the AI and gaming communities,
attracting a steady number of participants on two tracks. As
mentioned before, one track required using a deck prepared by
the organizers (some of them, but not all, were known before),
while the other allowed to bring own deck to the table.

Hearthstone AI Competition used a SabberStone – a Hearth-
stone simulator written in C# .Net Core that claimed to
implement 98% of the base cards from the game (as of 2019;
development stopped then). To create an agent, a participant
had to implement an AbstractAgent class and a number of
methods, including the main one that receives a game state and
returns an action to perform. The time limit to finish the whole
turn was 30 seconds. Sabberstone provides means to simulate
the game randomly and introduces dummy cards instead of
the opponent’s hand to handle partial observability. While
developing our competition framework, we tried to include
the best of SabberStone, which served as our inspiration.

Winning strategies of the submitted agents include MCTS,
Rolling Horizon Evolution, Pruned BFS, and Dynamic Looka-
head algorithm, usually paired with a state evaluation function.

B. Strategy Card Game AI Competition

Legends of Code and Magic (LOCM) [9] is a small pro-
gramming game developed for the official CodinGame1 con-
test in 2018, where it attracted over 2,000 participants. Later,
the game was slightly extended and started as an academic
competition (2019–2021), then extended again (2022). Over-
all, six editions were organized, hosted by IEEE Conference
on Games and IEEE Congress on Evolutionary Computation.

LOCM was designed as a toy-size problem, with the AI
research in mind, and to encourage trying new ideas. The game
contains 160 cards, and all cards’ effects are deterministic, thus
nondeterminism is introduced only via the ordering of cards
and an unknown opponent’s deck. The game is played in the
fair arena mode, i.e., before every game, both players create
their 30-card decks secretly from the symmetrical yet limited
card choices. The last edition introduced Constructed Mode,
where an agent can construct their deck by picking all cards at
once from a given pool, but in each game, this pool is different
as it contains randomly generated cards.

The contest did not pose language restrictions, as long as
the agent ran on a Unix system. The communication protocol
based on the standard input-output. It operated on significantly
smaller timeframes: depending on the edition, it was either 100
or 200 milliseconds per standard turn.

1https://www.codingame.com

Winning approaches were mostly based on various search
algorithms (Flat MC, MCTS, Minimax) accompanied by hand-
made heuristics. However, the last edition was dominated by
neural network approaches.

III. RELATED RESEARCH

It has been pointed out that Collectible Card Games pose
many interesting challenges for AI research [7]. The most
straightforward (to define, not to achieve) goal is to success-
fully play the game.

A variety of approaches were proposed, though due to
the stochastic nature of the game, many took the form of
MCTS [11] enhancements. Some work focuses on learning
weights for evaluation functions that are further used in search
algorithms. An approach using competitive coevolutionary
optimization for this purpose, and using it in a greedy one-step
look-ahead algorithm (2nd place in 2018 Hearthstone AI Com-
petition) is presented in [12]. In [13], the evaluation for Online
Evolutionary Planning AI playing LOCM was trained using N-
Tuple Bandit Evolutionary Algorithm. LOCM-based study in
[14] analyzes the influence of representation and the choice
of opponent used to test the model on the quality of learned
heuristics. Simulation-based approaches often require some
means for reducing search and action space. Combination of
many interesting enhancements, including state abstraction,
optimized Information Set MCTS, and sparse sampling was
described in [15] (Hearthstone AI Competition winner 2019).
Another Hearthstone-based study, [16], extends Determinized
MCTS with bucketing chance nodes and high-level playouts,
also testing neural networks for learning card playing policy.
Neural networks have proven to work really well in the CGG
domain, as they can be used as an evaluation function [17].
Recent most spectacular successes include double-winning
the last edition of Strategy Card Game AI Competition [18]
and winning against the top 10 human player of the official
Hearthstone League in China [19].

An interesting topic regarding CCGs is deck building, the
task of preparing a combination of cards that, when paired
with an AI agent, will be able to win against a variety
of opponents consistently. The usual approach for this task
is to use some form of evolutionary algorithms (EA) [20].
An approach tailored to the arena game mode in LOCM,
extending EA with active genes to improve learning efficiency,
was described in [21]. In [22], a modification of the MAP-
Elites algorithm that introduced sliding grid cell boundaries
was shown to discover high-performing Hearthstone decks. A
related topic, touching the metagame, is game balancing. Our
aim is to ensure that the entire set of available cards does not
degenerate to a single winning deck. Some study, focusing on
finding overperforming cards, can be found in [23].

IV. TALES OF TRIBUTE CARD GAME

Tales of Tribute (ToT) is a two-player deck-building card
game released in 2022 as an expansion to the popular MMO
RPG game The Elder Scrolls Online (ESO), developed by Zen-
iMax Online Studios and published by Bethesda Softworks.

https://www.codingame.com


Fig. 1: Tales of Tribute in The Elder Scrolls Online.

It features several decks of cards that differ in playing style.
Each deck is represented by a patron. These decks can be
acquired during ESO gameplay, and playing ToT is related
to various ESO quests and achievements. Figure 1 shows the
screen of the original game.

A. Game Rules

Here, we present a compact description of the nearly-
complete Tales of Tribute rules. Figure 2 shows how the game
looks within Scripts of Tribute GUI. All interface elements are
described below and referenced using numbers (e.g., 1 ).

The competition-ready Scripts of Tribute release is com-
patible with Tales of Tribute from ESO PC/Mac Patch 8.3.5
(15.03.2023) and contains six out of nine patrons available in
ESO. All cards are fully upgraded. When enumerating a list
of available patrons and keywords, only a subset used during
the competition is presented.

1) Starting a match: There are six patron decks available.
These are equivalent of suit of cards, colors, or classes from the
other CCGs. Before the main part of the game, players choose
4 decks that will be played. The starting player chooses first
and fourth, while the second player chooses second and third
deck. There is also one neutral, so-called Treasury deck that
is present in every match.

2) General playing rules: Each player starts with a deck
containing 10 cards: 4 are the starter cards from the chosen
decks, and six are the basic Treasury cards called Gold. The
remaining deck cards (chosen ones and Treasury) are shuffled
and put to tavern pile face down. Top five cards are put in
the middle and are visible to both players – this is called the
tavern 1 . Random 5 of players’ cards are in their hands, and
the rest is shuffled and put in their draw piles.

There are three main resources in Tales of Tribute: coins,
prestige, and power. Coins 2 are primarly used to buy cards
from the tavern. At the end of every turn, unused coins are lost.
The main purpose of the prestige 3 is to gather enough to
win the game. Power 4 can be spent to attack the opponent’s
agent cards and unspent power automatically transitions to
prestige at the end of the turn.

During their turn, a player can use cards in hand 5 (any
number of them, in any order). Using Gold card from the

initial hand gives +1 coin; starter cards usually give +1 coin
or +1 power. The second player is handicapped, thus they
start their first turn with 1 additional coin. Each card has
an associated coin cost 6 , so by spending coins, one can
buy cards from the tavern (from the five available). After
purchasing a card it goes to cooldown pile 7 , and the top
card from the tavern deck goes to tavern and can be bought.

Used cards go to the played pile 8 which, after the end of
the turn, is merged with the cooldown pile. Next hand is drawn
from the draw pile 9 . When it becomes empty, cooldown pile
is shuffled and becomes a new draw pile.

Players alternate their turns, buying cards from the same
tavern and competing over the favor of same patrons.

3) Cards: Usually, we have to pay the card’s cost when
buying a card from the tavern. Using a card from our hand is
always free. Every card belongs to exactly one deck (patron
deck or Treasury). There are several types of cards:

• starter: Each patron has one type of a starter card. They
are put to players’ decks at the beginning of each match.

• action: Most common type of cards. When played from
the hand, they trigger their effects and are put on played
pile, which is later merged with the cooldown pile.

• contract action: They are played automatically as soon as
they are acquired, trigger their effects and go to played
pile. However, at the end of the turn, they are not shuffled
into cooldown pile, instead they are removed from the
match.

• agent: When played (from the hand), they are placed on
the board, and remain there through the turns 11 . In
the following turns, a player can use an active agent
triggering its effects, just as they would play another
action. Every player can have at most 7 active agents.
Summoning a new agent trigger its effects but the card
does not stay on board. Agent cards have an additional
health statistic. During their turn, players can attack oppo-
nent’s agents spending power, reducing agent’s health by
min(power, agentHealth). When agent’s health reaches
0, it is moved to the cooldown pile. Attacking opponent’s
agent is voluntary. However, some agents have taunt,
which automatically uses opponent’s power to attack
them, preventing its conversion to prestige.

• contract agent: They are played automatically as soon
as they are acquired from the tavern. Otherwise, they
behave like a standard agent with the exception that when
destroyed they are removed from the match entirely.

4) Combo Effects: Using a card (action from hand, or active
agent on the board) triggers its play effect. However, most of
the cards have additional effects that are set under the combo
n condition 11 . These effects are triggered when n cards
from the same deck were used during the same turn. The card
itself contributes to the counter, so play effect is semantically
equivalent to combo 1.

When calculating a combo counter for cards from a given
deck, the order of playing its cards and playing other deck’s
cards in between does not matter. If a player plays a card from
a deck, and there are already 2 cards in their played pile from



Fig. 2: Graphical user interface of the game within Scripts of Tribute framework.

TABLE I: Keyword effects.

Keyword Triggering effect

ACQUIRE n Acquire 1 card from the tavern with a cost up to n

COIN n Gain n coins

DESTROY n Destroy up to n of your cards that are in play

DISCARD n
Opponent discards n cards from their hand
at the start of their turn

DRAW n Draw n cards from the draw pile

HEAL n Heal this agent for n health

KNOCKOUT n Set health of n opponent’s active agents to 0

OPPLOSEPR n Opponent loses n prestige

PATRON n Additional n patron activations this turn

POWER n Gain n power

REPLACE n Replace up to n cards from the tavern

RETURN n Return n cards from cooldown to the top of your draw

the same deck, all the combo 3 effects will trigger: the one on
the currently played card (if exists), and these on the cards in
the played pile (if exist).

5) Keywords: The possible effects of playing cards are
described by a set of keywords. The semantics of each keyword
is generally simple, and for each play/combo effect at most two
keywords are used. Keywords may be merged by either and
operator (effects of both keywords are applied) or or operator
(player decides which effect applies). Available keywords are
summarized in Table I.

6) Patrons: Each deck in Tales of Tribute is represented by
a patron and the four patrons belonging to chosen decks are

TABLE II: Patron powers.

Patron Activation cost Effect

Ansei 2 Power Activating player becomes favored;
(cannot favor player) Favored player gain 1 coin at turn’s start

Crows All coins, min. 1 Gain power equal to coins− 1(cannot favor player)

Hlaalu Sacrifice a card Gain prestige equal to
card’s cost− 1

Pelin 2 Power Return an agent from cooldown
to the top of your deck

Rajhin 3 Coins Place Bewilderment (no effect) card
in opponent’s cooldown pile

Red Eagle 2 Power Draw a card

Treasury 2 Coins Sacrifice 1 card and create
1 Writ of Coin (gives +2 coins)

present during the game 12 . Patrons have a status visualized
by an arrow pointing from the patron. They can be neutral or
favor one of the players. All patrons start neutral.

Every patron has a special effect that benefits a player, but
its activation comes with a cost. Usually, activating a patron
shifts their status one step towards a player. By default, a
player can make one patron call per turn, but some card effects
increase this counter. Treasury 13 is a special patron, present
in all matches. It does not have a status, yet its activation
counts normally, decreasing counter by one. Available patrons
and their effects are summarized in Table II.

7) Winning: There are a few ways to win. The first one is
to earn the favor of all four patrons. If a player achieves that in
any moment of their turn, they immediately win, disregarding
all other circumstances.



Other than that, when one player gains at least 40 prestige,
the opponent needs to beat their score next turn to stay in the
game. The match goes into a “sudden death” mode. The player
who fails to match their opponent’s prestige in their turn loses.
The upper limit is 80 prestige. The player who reaches this
limit first wins after the turn ends.

For safety reasons, we included a hard limit of 500 turns, not
present in the original game, resulting in a draw. In practice,
it is reached only by extremely naive agents (e.g., random).

B. Playing strategy

The starting goal is to build the economy. This is done
mainly by using Treasury patron to change Gold cards to
Writ of Coins (giving +2 coins instead of +1). Buying average
cards from the tavern is a risk of revealing good cards for the
opponent to buy, so usually only top cards are bought during
this stage.

With a stable income allowing to buy 7+ cost cards every
turn, the main deckbuilding phase begins. Buing good, possi-
bly expensive, cards with focus on one or two decks increase
probability to trigger high level combo effects. These prob-
abilities can be turned into certainties when combined with
deck thinning (destroying owned weak cards) and additional
card draw.

At some point, winning seem to be within reach. It is time
to abandon buying cards that will not be of immediate use,
and even sell cards for power if possible. Focus should be
shifted from coins to power/prestige generation, to reach the 40
prestige threshold as fast as possible, with the help of specific
patrons like Crows or Hlaalu to make a final leap.

Please note that every match has its own characteristics,
depending mainly on the patrons in play but also on what
appears in the tavern. For example, usually matches with
Hlaalu have more easily accessible coins, while Rajin games
can be slower due to the Bewilderment cards and cards’ ability
to decrease opponent prestige.

V. COMPETITION FRAMEWORK

We present Scripts of Tribute (SoT), a Tales of Tribute
Simulator written in .Net C#. In this Section, we provide a
brief overview of the framework and how to implement agents
in it. For more information, please refer to the competition
webpage and the thesis [24].

A. Implementing an Agent

To implement an agent, a contestant has to implement a C#
class inheriting from the abstract AI class and compile the
code into a library. The resulting dll file has to be placed in
the right folder (OS-dependent) in order for GUI or Console
Runner to be able to load this agent.

Implementing AI class requires overwriting three methods.
SelectPatron is called two times when selecting patrons
before the match. It receives a list of patrons still available
to be picked and a number specifying pick turn. The method
should return the identifier of the chosen patron. Play method
is called each time the agent needs to make an action. It

receives a GameState, a list of legal actions, and should
return one of them. GameEnd is called after a match and
allows an agent to analyze the data from this match, stored
in the given EndGameState object. There is a special Log
method the agent can call. It takes a string and appends it to
the logs that can be later displayed by GUI or redirected by a
Game Runner to a file.

B. Engine

The GameState object given in Play method is the game
state as perceived by the human player. It has access to e.g.
agent’s own draw pile, but it is sorted lexicographically, not
in the order of draw. Also, the opponent’s hand and draw pile
are merged (we know their contents but not the order and
which of the cards are currently in hand). But our engine
still allows to simulate a course of the game by using an
ApplyState method of GameState. However, to deal
with partial observability and randomness, the method requires
the seed parameter and switches the type of our state to
SeededGameState. This is a complete game state that has
access to all piles with proper ordering but with the assumption
that they were randomized using the given seed.

The computational model behind ToT is specific due to the
fact that a single action, like playing a card, may cause a chain
of effects (triggered combos), and each of these effects may
require another action interrupting the chain and putting other
choices to be resolved at the beginning (e.g. acquiring a card
from the tavern which requires choosing one of them).

For this reason, we make a strong distinction between nor-
mal actions and choices required by previous actions. Possible
action types are: ACTIVATE_AGENT, ACTIVATE_PATRON,
ATTACK_AGENT, BUY_CARD, END_TURN, MAKE_CHOICE,
and PLAY_CARD. Thus, the GameState object knows if the
current move to make is a pending choice and contains a queue
of effects that have to be resolved after.

The engine is designed to be extendable. It allows adding
new cards, new keywords, and even new patrons relatively
easily. All cards are kept in a single cards.json file, and a
Python script generates C# enums with card IDs. Adding a new
effect requires creating a new value in EffectType enum
and ensuring its proper behavior in several parts of the code.
Implementing a new patron requires making a class extending
the abstract Patron class.
Game Runner is a console application provided with the

engine. It allows to load agents from dll files (they have to
be in the same directory as the runner) and run games between
them. It allows to specify, in particular, the number of matches
to be played, seeds for these matches, and options for logging
into files. This tool will be used to run the competition.

To present an estimation of the engine efficiency, we ran
1000 matches between two Random agents using the Game
Runner (on a single thread). It took about 8.5 seconds on Intel
Core i5-9300H, and 2.5 seconds on Intel Core i7-12700H,
using C# 7.0 and .Net Standard 2.1. The memory overhead of
the game engine is negligible.



C. GUI

The graphical user interface of SoT is written using the
Unity framework. It can be built from the available sources in
the repository, but we publish most current versions as releases
that contain built executables for Windows, Linux, and Mac
OS. Figure 2 shows what the game screen looks like. The
general layout of the original game is preserved, and most
interaction behaviors were kept the same as in ESO ToT.

GUI allows playing a human versus AI agent match. Before
starting a match, there is a basic setup where we can choose
an AI opponent, decide whether we go first or second, set the
time limit per turn (for AI), and provide seed value if we aim
to duplicate the order of tavern cards and RNG calls from
some previous match. Then, there is a patron-picking phase,
and afterward, the main part of the match begins. The user is
always on the bottom of the screen.

The main purpose of GUI is to help with the development
and debugging of agents. Thus, during the game, we play open
cards and can see AI’s hand, draw, etc. To control when the
agent is playing, we have two buttons available 14 . One calls
an agent to make a single move and shows its effects on the
screen; the other performs the entire turn at once.

There are two additional screens, absent in the original
game. First contains the detailed action history 15 , listing
all past actions: played cards, triggered effects, and other in-
teractions. This helps with understanding the game mechanics
and checking the detailed consequences of one’s actions. The
other screen shows the agent’s logs in a copyable form 16 .
If a Log method is called in its class, it will be printed after
each action taken by the AI.

VI. EXPERIMENTS

To test our framework and validate its usefulness for com-
petition purposes, we have developed several agents varying
in strength and organized a tournament between them.

A. Example agents

We briefly introduce some of the agents available in the
competition repository2. The agents presented here are de-
scribed in more detail in the thesis [24].

1) Random: Plays actions picked uniformly at random out
of the set of legal ones minus END_TURN. The agent ends
their turn only when there are no other actions available. In
most cases, playing all the cards from a hand is a safe course
of action. The play style of this agent seems to correspond to
how NPCs play on the Novice level in ESO.

A fully random agent, which can also uniformly finish the
turn, is skipped in our comparison, as in the global tournament,
it achieved a win ratio of less than 0.25%.

2) Max Prestige: Maximizing prestige (and power, since it
is usually converted to prestige) is the first straightforward
strategy that comes to mind. This agent simulates moves
checking all paths of length up to two, and chooses the action
with the highest sum of prestige and power. It prefers winning

2https://github.com/ScriptsOfTribute/ScriptsOfTribute-Core

action if one is found. The approach can be seen as a variant
of a classic One-step Look Ahead (OSLA) algorithm, which
proved to work well in various multi-action games.

3) Patron Favors: Most matches end with 40+ prestige,
and it is easy to forget about the patron-based alternative win
condition, which is usually tricky to achieve during a normal
game. Thus, this agent was created to test a simple strategy
focusing on winning by favoring patrons.

The agent prioritizes actions that lead to activating a patron
that does not favor it. If it used all activations in this turn,
it performs shallow search checking possibilities for another
activation. Otherwise, the agent plays as Random.

4) Max Agent: As the cards of type agent are generally
strong due to their more permanent presence on the board,
we created a bot specialized in using them. This bot starts
its turn by randomly using all the ACTIVATE_AGENT or
PLAY_CARD actions and then checks whether it can buy
any agents, prioritizing regular agents over the contract ones.
Agents are sorted by their tier, and the best one is selected for
purchase. If buying an agent is not possible, a random action
is played (except END_TURN).

This is the first of the algorithms that makes use of a card
tier list – a ranking system that helps categorize cards based
on their power, versatility, and synergies between them. It
is a very popular approach that helps human players during
the decision-making process, used both by beginners and
experienced gamers. Such tier lists can be made by using
algorithms, as some researchers did for Hearthstone. For the
purpose of this experiment, we created a static list ourselves,
subjectively dividing all cards into five tiers.

5) Decision Tree: The agent deterministically calculates the
best action based on the actual state of the board. It plays
cards, beginning with those from Treasury. Usually, it will
play all the cards and then decide to make other moves.
The agent prioritizes buying cards that make their deck more
powerful: high-tier cards or cards from decks it contains many
cards from. Contract cards from the Treasury deck are handled
separately, based on the current state of the board, as their use
is highly situational. The agent manages patrons to prevent
the opponent from winning and tries to win with them if it
seems within reach. It also has rules to ensure the patrons
are used efficiently. Choices are handled depending on their
meaning (e.g., selecting a minimal amount of bad cards or a
maximal amount of good cards), and the option that seems to
be situationally better is chosen.

6) Flat Monte Carlo: The agent uses random simulations
from the current root with a limited horizon – it does not go
beyond a random event, thus sticking to only what is surely
known at this moment. A random event is defined as drawing
a card, an action that requires some choice, or buying a card
after a new card appears in the tavern. Each time the agent
remembers the playout with the best heuristic value and uses
it during subsequent subturns, until a random event occurs,
when it starts new calculations. To reduce the number of early
playout terminations, the probability of selecting END_TURN
when other moves are possible, was set to 0.1%.

https://github.com/ScriptsOfTribute/ScriptsOfTribute-Core


The reasoning style for this agent somewhat corresponds to
how many people play this game – as they try to figure out
the best playouts with all information available right now.

All simulation-based bots use the same heuristic evaluation
function, based on the set of features with assigned weights
(both handcrafted and tuned using an evolutionary algorithm).
The function considers the amount of power and prestige, as
well as the level of patrons’ favoritism. If the agent’s prestige
is smaller than 30 (subjective threshold between the middle
and endgame phases) it also takes into consideration: tiers of
agent-type cards on the board (own and opponent’s), tiers of
cards in own deck, and amount of cards from the same deck,
and penalties for cards left in the tavern, that are of high tier
or that may suit the opponent deck composition.

7) MCTS: This agent uses a slightly modified version of
the classic MCTS [11]. It simulates only its own turn, and
based on the state after the playout, assigns a heuristic score
to this simulation. It uses guided playouts, greedily choosing
the action that leads to the state with the highest value.

The agent also uses modified UCT, taking maximum instead
of average. Although it seems counterintuitive, as there are
random events during our turn, and this way we do not
properly estimate probabilities of such events, this behavior
proved to work better during the tests.

8) Beam Search: Classic best-first search optimization al-
gorithm that can also be successfully used in multiplayer
scenarios [25]. The agent simulates only their turn, so by using
large beam width it can cover most of the tree up to a given
depth. To avoid getting stuck in the local maximum, the agent
uses simulated annealing to select, with a small probability,
paths with lower heuristic scores.

B. Comparison of Example Agents

Figure 3 shows the results of our tournament. In each
iteration, every algorithm played one game against every other.
The turn limit was set to 30 seconds. We run 400 iterations in
total, after which time the results seem to be stable, forming
three clusters of agents.

The best three agents are clearly MCTS, Decision Tree, and
Beam Search. However, when we look at the scores between
each pair (Table III) it seems that there is no clear win-
ner. Instead, we observe a rock-paper-scissor behavior. This
observation also indicates that a variety of techniques seem
promising, and may be used to tackle the game successfully.

Although the idea behind the Max Prestige agent is straight-
forward, it performs quite well, achieving significantly better
scores than other simple agents. Also, before round 200,
all agents were choosing patrons randomly, while after they
switched to the Apriori algorithm, based on the win rates
learned from the previous games. The only agent that visibly
profited from this change is Max Prestige.

Figure 4 shows the win rate of Beam Search against MCTS
depending on the selected beam width (200 games per player
order per beam width). The difference in Beam Search win
rate, depending on whether it is the first or the second player,
deserves special attention, as this is not a unique behavior.

Fig. 3: Results of the tournament between all example agents.

TABLE III: Detailed win rates (including 95% confidence
intervals) between top 5 agents from the tournament. 400
games between each pair.

versus Max Prestige Flat MC Beam Search Decision Tree MCTS

Max Prestige 62.7±4.7 76.8±4.1 87.2±3.3 73.2±4.3
Flat MC 37.2±4.7 80.8±3.9 68.2±4.6 84.8±3.5

Beam Search 23.2±4.1 19.2±3.9 56.5±4.9 48.5±4.9
Decision Tree 12.8±3.3 31.8±4.6 43.5±4.9 56.2±4.9

MCTS 26.8±4.3 15.2±3.5 51.5±4.9 43.8±4.9

Average 25.0±2.1 21.6±3.5 63.1±2.4 63.9±2.4 65.7±2.3

Repeating tests for other agents show that the win rate when
being first is usually significantly higher. Given this, during
our competition, all games between agents will be played with
switched starting positions using the same seed.

VII. CONCLUSION

This paper introduces the first Tales of Tribute AI Com-
petition, a new card game-based AI challenge aiming to fill
the gap after no longer organized Hearthstone AI Competition
and Strategy Card Game AI Competition. Our contest is based
on an existing (mini)game Tales of Tribute, an activity within
the MMORPG The Elder Scrolls Online featuring an original
collectible deckbuilding card game. ToT is smaller and simpler
than Hearthstone, but significantly more challenging than
Legends of Code and Magic used in SCGAI. The size of the
game allows it to be fully translated into a research framework,
without any handicaps or simplifications, providing equal
challenge to both human and AI players.

Just like other CCG-like games, ToT characterizes by large
branching factor, randomness, and hidden information; a com-
bination of features that algorithms still struggle with.



Fig. 4: Beam Search versus MCTS depending on the beam
width and player order.

There are never enough challenges tackling these problems
from different sides, encouraging the researchers to overcome
them. Moreover, as TOTAIC is the first card-based competition
based on a deck-building game, it introduces some novel point
of view. In particular, there is more long-term planning in-
volved, as acquired cards usually influence the board multiple
turns away, and player interactions are less straightforward, as
we usually do not deal with the opponent cards directly.

The domain is suited to the classic adversarial search ap-
proaches, including MiniMax and Monte Carlo Tree Search, as
well as optimization algorithms (Rolling Horizon Evolutionary
Algorithm, Beam Search) and Neural Networks. We expect the
successful solutions to be a mix of the mentioned techniques
with some rule-based decisions to handle specific cases.

The first edition of TOTAIC is hosted at the IEEE Con-
ference on Games 2023. We are planning to further develop
our framework and especially keep improving GUI, making it
more user-friendly and matching the original game experience.
The secondary goal is to make our project interesting for the
ESO players base who enjoy ToT, broaden the knowledge
about AI to non-academia people, and give some perspective
on human vs AI tournaments. Our long-term plan is to keep
up to date with the ESO version of the game, by implementing
new decks, and providing balance changes. Thus, we hope that
the difficulty of the challenge will slightly advance each year,
matching the increased experience of the competitors.

More information on how to participate in the Tales
of Tribute AI Competition, our framework, and bot-
making tutorials can be found at https://github.com/
ScriptsOfTribute.
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