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Abstract—In this paper, we evolve a card-choice strategy for
the arena mode of Legends of Code and Magic, a programming
game inspired by popular collectible card games like Hearthstone
or TES: Legends. In the arena game mode, before each match, a
player has to construct his deck choosing cards one by one from
the previously unknown options. Such a scenario is difficult from
the optimization point of view, as not only the fitness function
is non-deterministic, but its value, even for a given problem
instance, is impossible to be calculated directly and can only
be estimated with simulation-based approaches.

We propose a variant of the evolutionary algorithm that uses a
concept of an active gene to reduce the range of the operators only
to generation-specific subsequences of the genotype. Thus, we
batched learning process and constrained evolutionary updates
only to the cards relevant for the particular draft, without
forgetting the knowledge from the previous tests.

We developed and tested various implementations of this
idea, investigating their performance by taking into account the
computational cost of each variant. Performed experiments show
that some of the introduced active-genes algorithms tend to learn
faster and produce statistically better draft policies than the
compared methods.

Index Terms—Evolutionary Algorithms, Collectible Card
Games, Deck Building, Game Balancing, Strategy Card Game
AI Competition, Legends of Code and Magic

I. INTRODUCTION

Currently, not only classical boardgames like Chess [1] and
Go [2] are used as grand challenges for AI research. It has
been recently shown that such a role may be taken by modern
computer games. So far presented approaches that beat the
best human players in Dota 2 [3] and StarCraft II [4] are one
of the most spectacular and media-impacting demonstrations
of AI capabilities.

The weight is put on particular game features that make
designing successful AI players especially tricky, e.g., imper-
fect information, randomness, long term planning, and massive
action space. One of the game genres containing all these game
features is Collectible Card Games [5].

Recently, numerous research has been conducted in this
domain, focusing mainly on development of MCTS-based
agents, and creating the deck recommendation systems that
will choose the right set of cards to play. The Hearthstone
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AI Competition [6], with the goal to develop the best agent
for the game Hearthstone, [7] was organized during the IEEE
CIG/COG conferences in 2018 and 2019. The Strategy Card
Game AI Competition based on programming game Legends of
Code and Magic (LOCM) [8], designed especially for handling
AI vs. AI matches and played in the arena mode, was hosted
in 2019 by IEEE CEC and IEEE COG. The AAIA’17 Data
Mining Challenge: Helping AI to Play Hearthstone [9] was
focused on developing a scoring model for predicting win
chances of a player, based on single-game state data.

This work is the first approach to build a deck recommenda-
tion system for the arena mode. As in the other modes players
can use their full collection of cards, in arena they draw a deck
from a random selection of cards before every game. Such a
task is characterized by an even larger domain (considering
all possibilities of available choices), higher non-determinism
(the additional card selection phase is non-deterministic), and
harder opponent prediction.

We propose variants of the evolutionary algorithm that
uses a concept of an active gene to reduce the range of
the operators only to specific subsequences of the genotype
that changes from generation to generation. In other words,
our batched learning constrains evolutionary updates only to
the cards relevant for the particular draft. Individuals forming
the next population are no longer simply selected among the
parents/offspring populations, but instead, they are merged
from the specific subsets of their representatives.

We have conducted a series of experiments in LOCM to
estimate the performance of multiple variants of designed
algorithms and compare them with several baselines. Algo-
rithms learn on a small sample of random drafts (available
card choices) and are tested on a larger number of other drafts,
using large number of game simulations to estimate the fitness
value in such a highly non-deterministic environment. The
results show that some of the introduced active genes variants
perform better than other tested approaches, i.e., they tend to
draw stronger decks from the same available card choices.

II. BACKGROUND

A. Collectible Card Games

Collectible Card Game (CCG) is a broad genre of both
board and digital games. Starting with Magic: The Gathering



(MtG) [10] in the early 90s, or more recent Hearthstone [7]
and The Elder Scrolls: Legends (TESL) [11], a huge number
of similar games have been created.

The mechanics differ between games, but basics are similar.
Two players with their decks draw an initial set of cards into
their hands. Then the actual play begins. A single turn consists
of a few actions, like playing a card or using an onboard card.
The game ends as soon as one of the players wins, most often
by getting their opponent’s health to zero.

A typical CCG characterizes with a large number of
playable cards (over 1,000 in TESL and almost 20,000 in
MtG), which causes an enormous number of possible deck
compositions. This leads to even bigger in-play search space,
as the player does not know the order of his next draws, the
content of the opponent’s deck, nor his in-hand cards. Such
numbers tend to increase the amount of problems related with
the imperfect information and randomness.

It is also common to observe a metagame level of such
games. It describes the popularity of certain decks or cards.
On a top-level, meta creates a possibility to compare different
decks on a larger scale. Most often, it boils down to a “rock-
paper-scissors” scheme, but with more possible types.

B. Related Work
The problem of creating decks that will be effective for

some given meta (usually understood as a currently dominating
set of opposing decks) is one of the key challenges for CCG
domain [5]. In [12], the Hearthstone decks are evolved and
tested for their strength via playing against a small number
of predefined human-created decks. A similar task, but in
a much more complicated domain of Magic: The Gathering
has been approached, also via evolution, in [13]. A neural
network-based approach to deckbuilding in Hearthstone has
been presented in [14]. More in-depth analysis of Hearthstone
deck space and the impact of various factors on the process
of their evolution can be found in [15]. All the above research
is focused on the constructed game mode, i.e., a static card
selection, from unrestricted sets of available cards.

The topic closely correlated with deckbuilding is how to
design the cards in CCG to be balanced [16]. In [17], evolution
is used to propose changes to the cards that will result in better
balance. In [18], several experiments using a modification of
MAP-Elites algorithm for design and rebalancing of Hearth-
stone have been presented.

So far, no research has been aimed at the arena mode of
CCGs. Methods for estimating card values that could be useful
in arena play have not been subject to a proper investigation,
although they are popular among human game players. There
exist dedicated web pages and game-helping software that
recommends cards (e.g., [19], [20]). The data they are based
on is continuously updated and consists of a mix of expert
domain knowledge, mathematical formulas, and remarks made
by players on public forums.

C. Legends of Code and Magic
Legends of Code and Magic (LOCM) [8] is a small imple-

mentation of a Collectible Card Game, designed to perform AI

Fig. 1. Legends of Code and Magic – in-game visualization.

research. Its advantage over the real card game AI engines is
that it is much simpler to handle by the agents, and thus allows
testing more sophisticated algorithms and quickly implement
theoretical ideas.

All card effects are deterministic. Thus the non-determinism
is introduced only by the ordering of cards and unknown op-
ponent’s deck. The game board consists of two lanes (similarly
as in The Elder Scrolls: Legends), so it favors deeper strategic
thinking. Fig. 1 shows the visualization in the middle of the
game. Also, LOCM is based on the fair arena mode, i.e.,
before every game, both players create their decks secretly
from the symmetrical yet limited choices. The card choices
for the players are different every game, but both players have
the same decisions in this phase. This is not true in arena
mode in existing computer games, where every created deck
is used in several games versus players that had other options
to choose from. The deckbuilding in LOCM is more dynamic
and, although the concept of meta is still applicable, it can
be countered by the specific choices of drafts, reducing the
overall strength of usual human-created top-meta decks.

The game in a slightly simplified (one-lane) form was used
in August 2018 as a CodinGame platform contest, attracting
more than 2,000 players (or rather AI programmers) across the
world [21]. The Strategy Card Game AI Competition based on
LOCM was hosted in 2019 by IEEE CEC and IEEE COG [8].

III. METHODOLOGY

A. Problem Specification

Consider two players, A and B, playing in a constructed
mode. Before every game, they have to choose their decks, i.e.,
subsets of available cards additionally fulfilling some game-
specific constraints (e.g., no more than three copies of the
same card). Then, A and B play against each other, using their
playing algorithms and their chosen decks (randomly shuffled).

Thus, the goal of A is to choose deck and algorithm
such that it performs best over every possible combination
of the opponent’s choices. (In practice, as the number of such
combinations is huge, a much smaller set of meta opponent
decks is considered, as they are well-performing and have a
higher chance of appearance.)



However, considering the arena mode, the task becomes
slightly different. Now, the player A has to build his deck
given a set of choices in the so-called draft phase. Usually,
it consists of turns in which A has to pick one of randomly
given cards, and he is not aware of the future options. Thus,
the player’s goal is to choose the best draft strategy, i.e., such
that performs best for every draft options and every possible
opponent.

In the deckbuilding problem, we fix the algorithms used by
the players, treating them as given, and focus on optimizing the
policy of choosing the cards. Either a static as in constructed
mode, or dynamic, depending on the given draft options, in
arena.

1) Domain: Consider a set of all possible cards in the game
C. For Legends of Code and Magic, |C| = 160. During the
draft phase, a player collects 30 cards for his deck in turns, in
each turn choosing one of 3 given cards. Thus, given that all
draws are independent and a card cannot be repeated within a
single turn, the number of possible drafts for LOCM is
(160× 159× 158)30 ≈ 1.33× 10198.

During the draft, a player knows his previous decisions but
is unaware of future choices. Thus, when learning the best
draft policy, we search for the best function from the following
domain (simplified to repeating cards):

(C ∪ {⊥})30 × C3 → {1, 2, 3},

where ⊥ denotes a choice that is yet to make (remaining
draft turns). We assume the cards to choose from are ordered,
so it is enough to pick the position of the card.

This task can be significantly simplified by discarding
the information about previous choices (which removes, e.g.,
taking to account card synergies or controlling a mana curve),
and reduces the domain of possible draft strategies to

C3 → {1, 2, 3}.

In this work, for practical reasons, we represent a draft
policy as the pure card-value assignment: in each turn, the card
with the highest value is chosen. Such an approach is popular
as a base for the, e.g., Hearthstone arena helpers [19], [20]. It
also makes the encoding of the genome easy and relatively
small (vector of |C| real numbers), while still providing
a relatively good estimation of real-card value given that
learning is performed with respect to fixed playing algorithms.

2) Fitness Function: The difficulty with estimating the
quality of card selection policy comes from the multiple
sources of simplifying assumptions and randomness. Even
approximated fitness functions, using fixed playing algorithms,
are flawed not only because of unknown distribution of op-
ponent strategies, but also the nondeterminism in the games
themselves, causing the value of the function to be less
reliable.

In such a case, a reasonable approach is to combine
simulation-based estimations with numbers. First, sample the
largest possible portion of possible drafts. Second, estimate
fitness based on the performance of candidate policies on those
sample drafts, using a large number of simulated games.
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Fig. 2. Correlation between performance during training (x axis) and evalua-
tion (y axis). All algorithms were trained on 100 drafts and evaluated on 250
drafts. A single evaluation consisted of 250 games against two baselines and
three random strategies using the random player. Clearly, Evobase generalizes
worse than any of AG algorithms, which performance stays at the same level.

To be sound, this approach requires that the performance
on a low number of training samples correlate with the
performance on a larger set of unseen test samples. To ensure
this is true, we performed additional tests on draft strategies of
various quality and obtained from various sources. The results,
presented in Fig. 2, confirms such a correlation.

B. Simple Baselines and Measuring Computational Cost

To compare the algorithms fairly, we introduce a cost
measure C, which is equal to the number of simulated games
required to compute the solution. This is more accurate
than simple generation-based comparison, as the total cost of
calculating one generation may differ between two algorithms.

We introduce the following notation: n is the size of a
population, dt is the number of random drafts used to train the
solution, sg is the number of games played when comparing
two individuals.

To provide a simple baseline for the quality of evolution, we
use two types of randomly generated solutions. First, called
Randomall , creates n random individuals and plays sg games
(with side change) on every training draft between every pair
of the individuals. An individual which won the most games
is the solution. The computation cost of this method is:

CRandomall
= n× (n− 1)× sg × dt.

The second random baseline, called Randomtournament ,
randomizes n individuals and performs a tournament to select
the best representative. To determine the winner of each
matchup, sg games on every training draft are played. Thus
the computation cost is:

CRandomtournament
= (n− 1)× sg × dt.

We also use two precomputed card orderings, established
by some of the top participants of the one-lane CodinGame
LOCM contest [22]. Thus, they have no computation cost. We
call this strategies Contest1 and Contest2 .



C. Baseline Evolutionary Algorithm

The goal of the evolution is to improve the quality of draft
policies encoded as chromosomes. A straightforward approach
is to use all available training data in each generation.

A genotype is represented as a constant-size vector of
doubles. Every gene (from 1 to |C| = 160) encodes a priority
of the associated card (estimated card value). Thus, during the
draft phase, a card with the highest priority is chosen each turn.

As before, let n be the size of the population, and dt the
number of available training drafts. The schema of the baseline
evolutionary algorithm Evobase goes as follows.

The population is initialized with the random values be-
tween 0.0 and 1.0. To evaluate the population, we play sg
games between every two individuals for each of dt drafts
(with side change after half of the games). Then, we use
tournament selection (best of random 4 individuals) to select
n
2 parents based on the number of wins. The standard uniform
crossover is used. Mutation rate m = 0.05 is the probability
of changing each gene into a new random number. The elitism
size is 2. Thus, to compute g generations, this algorithm has
to play CEvobase

games, where

CEvobase
= n× (n− 1)× sg × dt × (1 + g).

IV. ACTIVE GENES ALGORITHM

Evaluating each generation using all of the available test
drafts, while being the most robust, is also time-consuming
and may force the evolution to be insubstantial within the
constrained computational budget.

Alternatively, we propose an approach where each gen-
eration is responsible for learning how to play only one
of the available test drafts. Such a method allows not only
evolving more generations within the same budget but also
observing a more detailed influence of single genes (cards) on
the performance of the agents in particular scenarios (drafts).
To emphasize the benefit of this gene-to-draft-to-outcome
correspondence even more, and partially make up for the loss
of generality it creates, evolutionary operators will be applied
selectively, differently in each generation.

We say a gene is active in a given generation if the card
it encodes appears within the draft choices. For the sake of
evaluation of this generation, all the other genes are considered
irrelevant. Thus, in this generation, we can perform crossover
and mutation only on the active genes. Moreover, this will
prevent the destruction of the so-far gained knowledge encoded
in the inactive genes, which has already proven itself through
the previous generations.

The major drawback of this approach is that we lose a
uniform metric that can be used to compare parents and
children across the generations. Thus, to select n

2 pairs of
parents, we run actual games to test how they perform on
the current generation draft. For each parent we perform
a tournament of size stSize = 4, playing stGames = 10
games each round. Selected parents create offspring in the
same manner as in the Evobase algorithm (uniform crossover,
constant mutation rate).

Now, we calculate fitness values for the offspring popula-
tion. This is done in sr rounds, where in each round we score
the population by the so-far wins and then play sg games (with
side change) between consecutive pairs in order.

The remaining part, selection, is in our approach substituted
by a merge operation. To create each of n individuals of the
next population, we use a fitness-based roulette to select a child
from the offspring, and a parent from the parents’ population.
For parents, the fitness values of their generation are used.

We investigated three variants of the merging procedure.
First, called AG , uses active genes most straightforwardly. The
resulting individual contains values of the active genes copied
from the child and inherits the rest from its parent. Thus, the
newest knowledge is considered the most important.

Alternatively, AGweights is the variant of AG that uses
the weighted sum instead. Such a variant aims to be more
conservative and improve individuals gradually, preserving
the already gained knowledge even more. The proportion we
found working is 0.75 of the parent gene and 0.25 of the child
gene, instead of the original 0 and 1 in AG .

For comparison, we also test AGall variant, which is based
on the same scheme but does not take advantage of active
genes (i.e., it treats all genes as active). Instead, it discards
the parent, and only the child gene values are copied.

Essentials of the pseudocode for these algorithms are pre-
sented in Fig. 1. Here, we assume that g = dt, which is in
align with most of the conducted experiments. More sophis-
ticated variants, using the same pseudocode but breaking this
assumption, are described separately in Section V-C. The main
procedure, EVOLVE, progresses through each generation learn-
ing dt drafts, creating random drafts using RANDOMDRAFTS,
calculating the children population using CREATEOFFSPRING,
and merging them, as described above, using MERGEALL.
Depending on the variant, MERGEONE selects an appropriate
behavior, where LERP is the linear interpolation function. The
SCORE procedure simulates a single game and updates the
scores (win counts) accordingly.

Thus, the cost of g generations using these algorithms is:

CAG = CAGweights
= CAGall

=

n× g × (stSize × (stSize − 1)× stGames + sr × sg × dt)

V. EXPERIMENTS

Source code for the described experiments is available in
a public GitHub repository [23]. All performed experiments
were run on a single CPU-Optimized DigitalOcean droplet
with 16 GB of RAM and 8 standardized vCPUs.

A. Algorithm Comparison

We compared the overall results obtained by the Contest1 ,
Contest2 , Random , Randomt , Evobase , AG , AGall , and
AGweights algorithms. To ensure the robustness of our ap-
proach, we have tested two playing strategies – random and
greedy. We did not test more advanced strategies due to the
computational time constraints.



Algorithm 1 Active genes algorithm variants pseudocode.
procedure EVOLVE(options)

old ← RANDOMPOPULATION(n)
for generation ← 1, g do

drafts ← RANDOMDRAFTS()
new ← CREATEOFFSPRING(drafts, old)
old ← MERGEALL(old, new, drafts, options)

return old

procedure CREATEOFFSPRING(drafts, old)
new ← EMPTYPOPULATION()
for individual ∈ new do

parents ← SELECTPARENTS(drafts, old)
children ← CROSSOVER(parents)
individual ← MUTATE(children)

SCOREPOPULATION(drafts, new)
return new

procedure SELECTPARENTS(drafts, population)
tournament ← SAMPLE(population, stSize)
for all draft ∈ drafts do

for all a ∈ tournament do
for all b ∈ tournament do

if a 6= b then
for game ← 1, stGames / 2 do

SCORE(a, b, draft)
SCORE(b, a, draft)

return BEST2BYSCORE(tournament)

procedure SCOREPOPULATION(drafts, population)
for round ← 1, sr do

SORTBYSCORE(population)
for all draft ∈ drafts do

for i ← 1, 3, 5, . . . , n do
a, b ← population[i], population[i + 1]
SCORE(a, b, draft)
SCORE(b, a, draft)

procedure MERGEALL(old, new, drafts, options)
merged ← EMPTYPOPULATION()
for all individual ∈ merged do

a, b ← ROULETTE(old), ROULETTE(new)
individual ← MERGEONE(a, b, drafts, options)

return merged

procedure MERGEONE(new, old, drafts, options)
if AGall then

cardIds ← ALLCARDIDS
else

cardIds ← CARDIDSIN(drafts)
merged ← CLONE(old)
for all id ∈ cardIds do

old[id] ← LERP(new[id], old[id], options.weight)
return merged

The first one uniformly picks a random action sequence,
while the latter selects the best actions, one at a time, according
to a material heuristic. A complete summary of their relative
performance is presented in Tables I and II.

While the competition-based heuristic Contest1 gains fewer
wins than loses, Contest2 seems to be the second most robust
choice from considered strategies. What is interesting, during
the one-lane LOCM contest [22] Contest1 was established as
the meta, outperforming other solutions, including Contest2 .

Scores of both random players are worse than those obtained
by any evolution-based approach, which is a clear indication
that the learning process gives a definite advantage.

Additionally, on Fig. 3, we visualized the process of evo-
lution for Evobase , AG , AGall , and AGweights . For each
of the presented algorithms, the best five individuals from
each generation played 50 games on 250 random drafts
against Contest1 , Contest2 , and three random individuals.
The results reported on this chart are higher than in the tables
mentioned before, as the random opponents tend to be less
skilled on average.

Surprisingly, the performance of the straightforward evolu-
tion Evobase is below 50% when using the random player.
Also, the correlation between performance on the training and
evaluation drafts is the worst (yellow line on the Fig. 2).
Each of its generations took significantly longer to compute,
so only a few of them can be finished within the assumed
computation budget. It might be the case that their number
is too low to observe learning. Nevertheless, a few non-
exhaustive experiments we had additionally performed showed
that the score does not raise significantly even with a far
greater computational budget or using different parameters.
This variant generates average solutions during the first gen-
eration that it cannot further improve.

As expected, AGall performs poorly. Using only offspring
genes results in constant forgetting, which is visible in its
evolution process. On the contrary, the remaining active genes-
based approaches, AG and AGweights , learn step-by-step from
low scores. Both need about four times the cost of the initial
Evobase generation to start performing better, but the process
does not finish there. They continue learning, which supports
the assumption of the advantage of batched learning and
selective genetic operators. The variant with weighted merge
achieves significantly better results versus all opponents, es-
pecially using the greedy playing algorithm. In particular, it
tends to achieve better performance faster, as it is easier to
stabilize at good gene values by weighted sum than it is by
gene replacing.

Although the improvements of a single percent using ran-
dom players do seem small, it is a common thing in such a
noisy environment as CCGs, and even that leads to a long-
term gain. Especially, when it translates into more significant
improvement for better player strategies. For comparison,
using greedy players for both evolution and evaluation leads to
more diversified results, emphasizing the difference between
the learning algorithms.



TABLE I
A COMPREHENSIVE COMPARISON OF ALL ALGORITHMS USING RANDOM PLAYER. EACH WAS TRAINED 10 TIMES WITH A COMPUTATIONAL BUDGET OF
1,000,000, YIELDING 50 BEST PLAYERS. EACH TWO PLAYED 20 GAMES ON 500 RANDOM DRAFTS. THE WHOLE EXPERIMENT WAS REPEATED 5 TIMES.

ALL SCORES ARE AVERAGED, FOLLOWED BY THEIR STANDARD VARIATIONS. THE BEST RESULTS OF EACH COLUMN ARE IN BOLD.

Contest1 Contest2 AGall AGweights AG Evobase Random Randomt Average
Contest1 − 48.73 ± 0.60 50.54 ± 0.25 48.35 ± 0.32 49.30 ± 0.29 50.43 ± 0.12 51.38 ± 0.19 51.23 ± 0.15 49.88 ± 0.14
Contest2 51.27 ± 0.60 − 51.95 ± 0.25 49.67 ± 0.24 50.70 ± 0.28 52.12 ± 0.20 52.87 ± 0.20 52.75 ± 0.20 51.46 ± 0.09
AGall 49.46 ± 0.25 48.04 ± 0.25 − 47.70 ± 0.09 48.49 ± 0.06 49.85 ± 0.08 50.78 ± 0.05 50.59 ± 0.05 49.16 ± 0.06
AGweights 51.64 ± 0.32 50.32 ± 0.24 52.29 ± 0.09 − 50.93 ± 0.07 52.27 ± 0.03 53.08 ± 0.05 52.99 ± 0.04 51.74 ± 0.04
AG 50.69 ± 0.29 49.29 ± 0.28 51.50 ± 0.06 49.06 ± 0.07 − 51.43 ± 0.07 52.33 ± 0.03 52.11 ± 0.04 50.76 ± 0.05
Evobase 49.56 ± 0.12 47.87 ± 0.20 50.14 ± 0.08 47.72 ± 0.03 48.56 ± 0.06 − 50.93 ± 0.04 50.69 ± 0.03 49.24 ± 0.04
Random 48.61 ± 0.19 47.12 ± 0.20 49.22 ± 0.05 46.91 ± 0.05 47.66 ± 0.03 49.06 ± 0.05 − 49.82 ± 0.03 48.26 ± 0.02
Randomt 48.76 ± 0.14 47.24 ± 0.20 49.40 ± 0.05 47.00 ± 0.04 47.88 ± 0.04 49.30 ± 0.03 50.17 ± 0.03 − 48.44 ± 0.02

TABLE II
A COMPREHENSIVE COMPARISON OF ALL ALGORITHMS USING GREEDY PLAYER. EACH WAS TRAINED 3 TIMES WITH A COMPUTATIONAL BUDGET OF

1,000,000, YIELDING 50 BEST PLAYERS. EACH TWO PLAYED 20 GAMES ON 500 RANDOM DRAFTS. THE WHOLE EXPERIMENT WAS REPEATED 3 TIMES.
ALL SCORES ARE AVERAGED, FOLLOWED BY THEIR STANDARD VARIATIONS. THE BEST RESULTS OF EACH COLUMN ARE IN BOLD.

Contest1 Contest2 AGall AGweights AG Evobase Random Randomt Average
Contest1 − 51.48 ± 0.44 48.27 ± 0.20 40.75 ± 0.25 42.72 ± 0.35 44.73 ± 0.44 50.49 ± 0.17 51.89 ± 0.67 47.19 ± 0.17
Contest2 48.52 ± 0.44 − 48.81 ± 0.56 42.05 ± 0.39 44.21 ± 0.37 45.94 ± 0.39 52.30 ± 0.16 53.61 ± 0.38 47.92 ± 0.11
AGall 51.73 ± 0.20 51.19 ± 0.56 − 43.38 ± 0.25 45.34 ± 0.03 48.14 ± 0.33 52.77 ± 0.14 54.82 ± 0.17 49.62 ± 0.11
AGweights 59.25 ± 0.25 57.95 ± 0.39 56.62 ± 0.25 − 51.95 ± 0.12 54.75 ± 0.25 59.33 ± 0.06 61.09 ± 0.18 57.28 ± 0.06
AG 57.28 ± 0.35 55.79 ± 0.37 54.66 ± 0.03 48.05 ± 0.12 − 52.91 ± 0.12 57.84 ± 0.15 59.58 ± 0.16 55.16 ± 0.12
Evobase 55.27 ± 0.44 54.06 ± 0.39 51.86 ± 0.33 45.25 ± 0.25 47.09 ± 0.12 − 54.96 ± 0.03 56.67 ± 0.09 52.16 ± 0.19
Random 49.51 ± 0.17 47.70 ± 0.16 47.23 ± 0.14 40.67 ± 0.06 42.16 ± 0.15 45.04 ± 0.03 − 51.97 ± 0.10 46.32 ± 0.02
Randomt 48.11 ± 0.67 46.39 ± 0.38 45.18 ± 0.17 38.91 ± 0.18 40.42 ± 0.16 43.33 ± 0.09 48.03 ± 0.10 − 44.34 ± 0.15
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Fig. 3. Process of evolution for AG , AGall , AGweights , and Evobase using random (left chart) and greedy (right chart) players. Computation cost (number
of simulated games) on x axis, average performance versus Contest1 , Contest2 , and three random strategies on y axis.

Moreover, a comparison between Tab. I, Tab. II and Fig. 3
shows that even a small advantage over the better performing
opponents yields a significant advantage over the less skilled
ones.

B. Analysis of AGweights Learning

In Fig. 4, we visualized the performance of overall-best
against generation-best individuals during a sample AGweights

run to analyze the learning progress. It shows how the all-time
top five individuals per 200 generations (the first generation
is an entirely random one) perform against the top five
individuals of each of the generations on all training drafts.

As we can observe, champions from later generations tend
to perform better on average, which is consistent with the

previous observations. All tested champions are significantly
strong at first because the first generation did not have time
to learn. As the learning progresses and the individuals from
the following generations are getting better, the scores of the
champions tend to be lowering.

It is worth noticing that the best genotypes of each genera-
tion were chosen based on the current generation draft, but the
chart shows their performance on all dt drafts. Thus, when we
treat champions as constant opponents that differ in strength,
we can observe changes in the overall score after learning
each new training draft. Each descent means that it improves
overall performance, while each rise signals that the overall
performance decreased, even though only one particular draft
was examined.
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Fig. 4. Average performance of AGweights champions against best five individuals of each generation. Each group played 50 games on every of the 1000
training drafts playing randomly. The average win rate (y axis) tends to drop, as the champions of the following generations (x axis) are getting stronger.
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Fig. 5. Process of evolution for AGweights variants using random player.
Computation cost (number of simulated games) on x axis, average perfor-
mance versus Contest1 , Contest2 , and three random strategies on y axis.

In many places, both peaks and valleys are in similar places
for multiple champion lines, which shows the importance of
particular drafts.

C. Investigating Active Genes Approach

The performance of active genes evolution correlates with
the number of training drafts used to evaluate a single popu-
lation. More drafts imply that a more significant part of the
genotype is active and being affected by the operators. On the
other hand, with a limited number of drafts per generation, the

quality of the evaluation is limited, and some knowledge may
be lost during evolution. Thus, we introduced two additional
variants of AGweights algorithm.

The first one, called AGweights/Kd , where K is the number
of drafts, affects parent tournament and merge phases, in
both places adding a loop over the used drafts. To keep the
computational cost and the number of drafts the same, this
variant runs for g/K generations compared to AGweights .

The second variant called AGweights/Kg , where K is the
number of repetitions, bases on reusing the same drafts K
times, leaving the evolution framework as-is. To ensure com-
parable computation cost, as the variant runs for g×K gener-
ations, the number of games in each generation is accordingly
lower.

Analyzing the results from Fig. 5, the average performance
of AGweights/4g is the lowest. The budget allowed too few
evaluations to make one-generation learning reliable enough.
However, less restricted variant AGweights/2g , although not the
top one, performs reasonably well, achieving higher perfor-
mance than our Evobase baseline evolution without problems
(compare with Fig. 3 for random player).

There is no significant difference between the performance
of AGweights/2d and AGweights/4d . Both performs similarly,
slightly worse than the two leading algorithms. When we
compare the difference between those approaches in terms
of percent of the genome that is active, we get that it is
∼56% for AGweights , ∼79% for AGweights/2d , and ∼95%
for AGweights/4d .



Evolution based on active genes usually performs better
when the number of such genes is lower, but this trend is
less visible in AGweights variant. In LOCM, proportion of
active genes depends on the generation method used to prepare
drafts. (This is similar to the dropout regularization technique
in the artificial neural networks.)

Additionally, we performed two more experiments concern-
ing the trade-off between the number of generations and the
number of plays during the evaluation, using larger K values.
Both yielded similar but noisier results, therefore have been
not included in the paper.

VI. CONCLUSION

This paper presents initial research towards the problem of
deckbuilding in the arena mode of Collectible Card Games.
This can be seen as a complementary problem for the standard
CCG deckbuilding, where the set of available cards is known
in advance. As the domain is characterized by vast state space
and omnipresent non-determinism, a straightforward approach
to learn draft strategies via an evolutionary algorithm is not
very successful and lefts much room for improvements.

In our work, we propose an active genes approach, a variant
that learns gradually, generation-to-generation. Learning in
each generation is based only on the partial training data, and
genetic operators are applied selectively only on a subset of
genes that is currently considered as relevant. The selection
operator is substituted by merge, performed between selected
pairs consisting of parent and offspring.

We have tested our approach in programming game Legends
of Code and Magic, which is used in the Strategy Card Game
AI Competition. We designed a few variants of the algorithm
and conducted experiments show that usually they perform
better than the baseline. Some of them achieve average results
that are even significantly better, taking into account that in
such a noisy environment as CCG (especially in arena mode),
even a small increase in win percentage is a substantial gain
leading to overall success in a longer timeline.

What is also important, most of the presented approaches
learn very fast in terms of our cost measure (which is the
number of required game simulations). Given a fast simulation
engine available on the Strategy Card Game AI Competition
package [24], it requires about half a minute for a random
player to achieve a decent performance on an average run.

For future work, we mainly plan to test active genes family
of algorithms on other similar domains, e.g., in Hearthstone.
From the game balancing point of view, it would also be
interesting to compare policies obtained by one-lane and two-
lane versions of LOCM, and how policies trained for one
playing algorithm works for the others.

We also aim to develop methods that will improve reliability
in terms of achieved performance. This includes using more
sophisticated simulated agents (at the expense of computation
time) and merging a few runs to perform multiple levels of
evolution automatically. We would also like to investigate
more algorithm variants and understand what influence on the
behavior of the agents has an algorithm that prepares draft

choices. Finally, we would like to test how our approach
affects agent performance compared to the other solutions
presented at the Strategy Card Game AI Competition.
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