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Abstract—This paper presents an initial approach to a generic
algorithm for constructing balanced multiplayer maps for strat-
egy games. It focuses on the placement of so-called strategic
features – map objects that have a crucial impact on gameplay,
usually providing benefits for the players who control them.

The algorithm begins with constructing a logical layout of the
map from the perspective of a single player. We use a novel
approach based on graph grammars, where rules do not add
new features but are initially constrained by the content of the
start node, which simplifies their construction. To introduce other
players’ space, the single-player graph is multiplied and partially
merged. The result is projected onto a grid by combining Sam-
mon mapping, Bresenham’s algorithm, and Voronoi diagrams.
Finally, strategic features are arranged on the map using an
evolutionary search algorithm.

We implemented the proposed method in a map generator
which we are developing for the popular strategy game Heroes
of Might and Magic III. We also point out how this approach can
be adapted to other games, e.g. StarCraft, WarCraft, or Anno.

Index Terms—procedural content generation, map generation,
graph grammars, heroes of might and magic

I. INTRODUCTION

Procedural content generation (PCG) has been used in
games since the introduction of home computers. Examples
include Beneath Apple Manor from 1978, or released in 1980
Rogue. However, the progress of PCG techniques did not go
hand in hand with the progress in other areas of game devel-
opment. Nowadays, most popular commercial video games,
especially AAA titles, either do not use procedural generation
or use relatively simple constructive generative techniques [1],
which are not especially interesting from the research point of
view.

World generation in Civilization VI [2] is based mainly
on Perlin noise and simple heuristics for objects placement.
Dungeons in Diablo III [3] consist of handcrafted tiles that
are combined together using a simple generator, and later
populated with randomized treasures and monsters. The levels
in Spelunky [4] always contain 16 rooms whose layouts
are selected from a set of predefined templates. To increase
visual diversity, random obstacles are placed according to
the templates’ indications. Lastly, monsters are put in spots
determined by heuristic rules.

On the other hand, academia-rooted PCG research often
focuses on more advanced techniques, such as evolutionary

algorithms, simulation-based evaluations, or neural networks
[5]. However, their implementations usually have a purely
scientific character, as they are applied mostly to test-bed
games and tools [6], [7], [8], [9], [10], [11], [12], [13],
indie games [14], or reimplementations of older titles [15],
[16], [17]. There are, of course, notable exceptions, including
level generation for Angry Birds [18], Cube 2 [19], [20], or
StarCraft [21]. Some academic approaches even turned out
into commercial (usually independently published) games, e.g.
Galactic Arms Race [22], Petalz [23], or Darwin’s Demons
[24]. Nevertheless, it is often a difficult and laborious task
to meet all of the requirements and generate maps that are
playable in an already existing, commercially published game.

Our ambition is to develop a map generator for Heroes of
Might and Magic III (HoMM3) [25] which could be widely
used by the game’s community. This paper describes the first
step towards this goal. We are presenting an algorithm that
generates a balanced map layout, projects it onto a grid, and
ensures a fair placement of the most important map features,
mainly towns and mines.

One of the main reasons for our work is, as we believe,
a community need for such a tool. Although the game is
nearly 20 years old, it is considered the best part of the
entire Heroes of Might and Magic series and is still widely
played. There are multiple fan-made mods and extensions,
including Horn of the Abyss, In the Wake of Gods, and VCMI
– an attempt to entirely rewrite the original HoMM3 engine.
Additionally, in 2015, Ubisoft released the HD Edition of the
game (642, 075± 24, 614 sold copies according to the Steam
Spy website1). Sadly, this version does not include expansions
and lacks the random map generator.

Existing template-based generators usually require a skilled
user to modify generator’s behavior. Instead, we aim to pro-
pose a method that will be able to produce reliable maps based
on simple user preferences. We provide necessary background
about map generation approaches in the next section. Our
algorithm is fully described in Section III. Section IV contains
details of our implementation, which is tailored for Heroes of
Might and Magic III and yields playable maps. We discuss the
results produced by our algorithm, present the arguments for

1https://steamspy.com/app/297000, retrieved March, 2018



its generality, and give a perspective of the future research in
Section V. Finally, we conclude in Section VI.

II. RELATED WORK

A. Procedural Map Generation in Games

In this section, we provide a brief overview of the PCG
research and algorithms relevant to this study. For the compre-
hensive survey on procedural generation and its role in games,
we refer to textbooks [5], [26].

Graph grammars ([27], [28]) allow to combine a powerful
and intuitive concept of grammatical rules with a capacious
graph representation. This approach is often used for creat-
ing non-linear story-driven levels, where the level structure
strongly follows the generated plot. In other words, all possible
paths towards the objectives, along with the events that can
be encountered along the way, are constructed as a randomly
generated graph.

In general, application of graph grammar rules is a compli-
cated task, as the left-hand part of a rule has to match a proper
subgraph, which then has to be modified in-place according
to its right-hand side. To make generated structures more
predictable, additional constraints are usually placed upon the
maximum number of application of certain rules or resources
that those rules can place. This causes the entire architecture
to become significantly more complex.

Graph grammars are especially convenient for generating
RPG-style one-player maps. A good example is a mission
graphs generator for Dwarf Quest [14]. It is based on evo-
lutionary search, where grammatical rules are applied as
mutation operators. Evolved mission graphs are converted into
Dwarf Quest levels consisting of pre-made rooms mapped
to nodes using so-called layout solver. Another approach,
presented in [12], generates Zelda-like levels via two-step
evolutionary algorithm: the first phase generates an acyclic
high-level graph of areas, while the second evolves, for each
area, a low-level cyclic graph consisting of rooms and doors.

An important issue is mapping the abstract graph structure
into concrete locations while preserving its characteristics. In
[29], the problem has been restrained to mapping trees into
a low-resolution grid (one node per square) and solved via a
recursive backtracking algorithm. If no mapping solution has
been found, the tree is discarded and regenerated.

An approach of generating RTS-style maps via multiobjec-
tive evaluation has been presented in [6]. The method had
since been extended and used to generate playable maps for
StarCraft, however, it commonly produces maps “not looking
very StarCraft-like” [21]. The genotype consists of player
base locations, resource (gas and minerals) locations, and
information about impassable areas. The algorithm tries to
optimize maps mainly for their fairness (various resource-
related metrics like distance, ownership estimation, safety) and
strategic aspects (metrics related to choke points and possible
unit paths). Recently, a new idea of using neural networks to
predict the placement of StarCraft map features based on the
existing map data has been proposed and tested in [30].

Lastly, we want to raise the subject of using cellular
automata (CA) as a map-filling algorithm. It is often needed to
populate an area with obstacles (water, impassable rocks, etc.)
in a way that is random, fast, and still somewhat controllable.
In [31], cellular automata have been utilized to generate sur-
prisingly lifelike cave-rooms. In particular, the authors perform
an exhaustive study on the influence of the CA parameters
on the style of the obtained caves. In the genetic algorithm
for generating Dune 2-like maps [17], an interesting approach
to cellular automata-based genotype-to-phenotype mapping is
used. Instead of direct map representation, the evolutionary
process modifies only the CA parameters (e.g. size of a Moore-
neighbourhood, activation threshold, number of iterations),
which are later used to fill the map with rock, sand, and
indirectly other features like player starting zones.

B. HoMM3 Map Generation

A random map generator had been introduced into HoMM3
with the first expansion – Armageddon’s Blade. Despite many
faults it was, and still is, commonly used (its exclusion
from HoMM3 HD Edition caused many complaints from
the players). The generator on its default settings tends to
produce highly unbalanced maps filled with items that are
rarely used by human map-makers (e.g. Pandora’s Boxes with
very random rewards), and valuable treasures that often lie
unprotected. One of its bugs can even occasionally make a
player starting position completely surrounded by obstacles.

However, by overriding generator’s template, it is possible
to modify, to some limited extent, the algorithm’s behavior.
This allows to handcraft a structure similar to our map layout
(see Section III-C), which contains information about the
zones’ characteristics and relative positions. Many alternative
templates have been made and shared among the community2.

The improvements of the random map generator are impor-
tant aspects of HoMM3 mods. Horn of the Abyss provides a
graphical template editor offering a wide array of settings3. Re-
cently, a new web-based map generator had been published4. It
is a work-in-progress version and still does not support all map
features (e.g. water, underground). It defines its own format of
templates, which allows for a very high level of customization
and gives a lot of control over the resulting maps.

III. METHODOLOGY

Let us start with the definitions. A zone represents consistent
map area with the same purpose, style, and level of challenge.
Zone is defined by its class, i.e. (type, level) pair. The higher
the level, the more challenging and rewarding the content of
the zone should be. The zones are local if they are easier
accessible for one player, i.e. it should be safe to explore for
that player. The buffer zones are the areas separating different
players’ local areas. Buffers are equally accessible by at least

2http://forum.heroesworld.ru/showpost.php?p=564869&postcount=57,
retrieved March, 2018 (in Russian)

3https://www.facebook.com/h3hotaofficial/posts/1447460758611590
4http://www.frozenspire.com/MapGenerator/Index.html, retrieved March,

2018



two players, so in these zones the multiplayer fighting should
take place. The goal zone is a special buffer, limited to one per
map, existing only in maps with specific winning conditions
(capture town, defeat monster, acquire artifact).

The content of zones is represented by features. There
are strategic features, like town and mine, or more technical
features: outers and teleports. The value of a feature describes
its detailed content. We distinguish player’s main town, other
towns they initially possess, towns dependent on surrounding
factions, and two types of random towns (chosen either by our
generator or in-game randomizer). There are base mines (for
wood and ore), primary mines (for faction-dependent most
important resources), gold mines, and random mines.

Outer represents a connection with other player’s part of the
map. Teleport is a special kind of outer: a hyperedge joining
all of its occurrences within the map via two-way monoliths.
The value of an outer is its level – representing difficulty in
the same way as levels of zones and influencing the strength
of guarding creatures. The value of a teleport is its level and
identifier. Teleports with the same identifier are joined together
and there can be at most 4 distinct teleports on the map.

A. Generation Parameters

First, the user needs to specify desired map characteristics.
Apart from necessary settings like map size, players’ spec-
ification, or winning condition, we defined eight parameters
influencing generator’s behavior. All the parameters have
values from 1 to 5, where the default 3 means “standard”.
The most important for the algorithm are:

• welfare – higher values mean more resources and mines,
• towns – higher values mean more towns placed,
• branching – higher values mean more connections be-

tween zones,
• focus – lower values mean more player-vs-player map,

while higher values focus on player-vs-environment,
• zonesize – higher values mean bigger zone areas (which

is equivalent to lesser number of zones placed).
Knowing the map specification, we start by defining the

content of the map without knowledge about its layout. We
do it from the perspective of one player, i.e. we enumerate
the zones he will encounter without going into other players’
territory. The generator uses a set of parameterized, random-
ized rules. For instance: number of zones depends on the map
size and zonesize parameter, maximum zone level depends on
the map size and overall estimated difficulty of the map, and
strong player-vs-player focus results in a smaller number of
local zones compared to the number of buffers.

Let us start with an example. For M-size, 4-player map
generated with default parameters, we can obtain the following
zone classes: (local , 1), (local , 3), (buffer , 2), (buffer , 4).

We generate features in a similar way. However, each feature
is already associated with a zone class. Although we do not
know an exact zone to place a certain feature, we know what
class of challenge this feature should belong to. These classes
are calculated based on feature values (e.g. gold mines have a
higher probability to be placed in high-level zones) and given

parameters (low player-vs-player focus forbids putting outers
in low-level local zones, winning condition “capture town”
requires town in the goal zone, etc.).

Continuing our example, we can obtain a starting town
(TSTART) and two base mines (MBASE) in (local , 1) zone, two
random mines (MRND) in (local , 3), a random (TNEUT) town in
(buffer , 4), and an outer edge in each buffer. (See Figure 1a.)

B. Logic Map Layout

The Logic Map Layout (LML) graph consist of nodes rep-
resenting zones and edges representing connections between
the zones. Each node contains a multiset of zone classes and
a multiset of features (with a proper class associated). LML
defines a logical structure of the map and is constructed using
a novel variant of a graph grammar algorithm.

An LML node is inconsistent if it contains a feature
associated with a class which is not present in the node. We
require our graph to always be consistent. A node is final if
it is consistent and contains only one zone class.

We initialize our graph structure with one node that consists
of all zone classes and features computed from the generation
parameters, as shown in Figure 1a. In our algorithm, graph
generation process comes down to making all nodes final.
Thus, our approach does not require any additional constraints
checking, as all we do is a redistribution of the nodes’ content.

(a) (b) (c)

Fig. 1. Constructing LML. Nodes contain classes and features, bolded lines
are outer edges with levels. Initial node is presented in Fig. 1a. Fig. 1b contains
one of the intermediate steps (after two successful applications of rule (1)).
The final LML is shown in Fig. 1c.

Each grammar rule has a weight assigned. In every step,
one rule is chosen via the roulette-wheel selection. If its
preconditions match, the rule is applied. Otherwise, the graph
remains unchanged. Currently, we use four production rules
(the weight in parentheses is either a constant or a parameter
value):

1) (15) For the first non-final node, divide its content by
pushing out a new node containing zones larger than a
random pivot.

2) (15) For the first non-final node, if it only contains n
zones with the same class, divide its content into n new
final nodes and put them at the same depth.



3) (branching) Duplicate random edge (if there is only one
edge between the nodes).

4) (branching) Connect two random, previously not con-
nected, nodes (only local-local or nonlocal-nonlocal).

Although this set can be extended infinitely by adding more
and more sophisticated rules, the ones we defined cover most
types of reasonable graphs, while remaining relatively simple.

The effectiveness of this grammar comes from a proper
ordering of the zone classes. We order zones of the same type
by their level, and otherwise we have: local < buffer < goal.
This way rule (1) always creates a new node containing a
buffer zone if the original node had one. It prevents a local
zone from being placed “after” a buffer (counting from the
starting position). Rule (1) alone will eventually give us trees
where any non-final node contains zones of only one class.

Thus, the rule (2) splits such nodes by making several new
nodes all containing only one zone (so they become final).
The new nodes have all or only some of the base node’s
edges (depends on branching parameter). The main issue here
is fair features redistribution. We defined heuristic values for
every type of feature. Thus, for each feature in the base node,
we insert it into the copy that has the lowest value at that
moment. The ordering in which the features are considered
depends on the zone’s type. For local zones, we distribute
towns and mines first, while for the other types we prioritize
outers and teleports. The role of remaining two rules is to
extend otherwise tree-like graphs with cycles and multiedges.

The final LML graph has been presented in Figure 1c. To
visualize the process, Figure 1b contains an exemplary middle
step, before applying rule (3) to duplicate an edge and rule (1)
to the only remaining non-final node.

C. Multiplayer Logic Map Layout

In the next step, we need to compute a layout for the entire
map, including all players and all zones. We call the resulting
structure Multiplayer Logic Map Layout (MLML). To create
this graph, we make a copy of LML for each player. Then,
we join these duplicated LML’s via the outer edges and merge
certain buffer zones. In doing so, we want to obtain a graph
which is connected and isomorphic from the perspective of
every player (i.e. the node containing player’s main town).

We say the MLML zones belonging to different players
are corresponding if they were created as a copy of the same
LML zone. We call a newly added edge valid when it connects
two zones of the same level. First, we attempt to connect all
the players’ graphs with valid edges between buffer zones, to
ensure the final graph will be connected.

After using the buffer zones’ outer edges, we add valid
edges between local zones, connecting the graph if still
needed, and simply distributing them randomly and evenly
otherwise. This can be optimized by keeping track of the added
edges for each players’ corresponding zones and ensuring all
players have similar edges. Remembering which correspond-
ing zones had a connection added between them lets us provide
a much higher chance for the final graph being isomorphic.

After distributing all outer edges, we merge certain buffer
zones, to simplify the graph and allow for a larger buffer zone
to replace several corresponding buffer zones. This is done by
restricting ourselves to a graph made up of the newly added
edges. We search through this graph for sets of corresponding
buffer zones, which only have connections between each other.

If such sets exist, each one can be merged into a single
buffer zone. While merging such zones, we say the merged
zone has a size equal to the sum of sizes of the original buffers,
up to a maximum of 3 times the base size (this is an arbitrary
limit, which has proven to work well enough during tests).
After these merges are finished, we want to verify that the
final graph is isomorphic as observed by the players by using
a rooted tree isomorphism algorithm5.

MLML for our example has been presented in Figure 2.

Fig. 2. Generated MLML. Numbers in braces identifies the corresponding
LML zones. Each zone contains information about accessing them players.

D. Mapping MLML to Grid
Our task is to project the MLML graph onto a grid, i.e. each

vertex has to become a separate zone on a game map. We are
bound by three constraints: (a) zones representing connected
vertices should be directly accessible from one another, (b)
vertex size should represent zone area, and (c) the map should
not contain too much unutilized space. We divide this process
into two stages. First, we embed the graph points in a planar
space. Then, we calculate a modified Voronoi partitioning
based on the result. The visualization of each step is presented
in Figure 3.

Solving the first constraint algorithmically is not a trivial
task. Instead, we chose to pursue a data science approach
and employ Sammon mapping [32] for creating a graph
embedding. Sammon mapping is a data visualization method
deriving from multidimensional scaling. Given a set of points
and a matrix d∗ij of relative distances between them, it embeds
the points in a low-dimensional space by minimizing a stress
function

E =
1∑

i<j

d∗ij

∑
i<j

(d∗ij − dij)
2

d∗ij
,

5https://groupprops.subwiki.org/wiki/Rooted_tree_isomorphism_problem



where dij is a distance matrix for the embeddings. Defining a
distance between two vertices as a length of the shortest path
between them allow us to use this method to draw a graph on
a plane [33].

In order to fulfill the (b) requirement, we start with reshap-
ing the graph. We split each vertex of size s into a cycle of
s subvertices. Edge (p, q) in the original graph is translated
to a random connection between the cycles for p and q.
After embedding the obtained graph using Sammon mapping,
we still need to ensure the (c) property. Consequently, the
output is rotated and cropped. Afterward, we use a gravity-
like mechanism to fill sparse regions by pulling the points
closer to the map edges.

Note that this method relies on heuristics, and the desired
proportions between areas are only roughly maintained. Nev-
ertheless, we found the results satisfying for the task.

At this point, we have a good basis for the partitioning of
a map space. To prepare for that, we add a sparse virtual grid
above the map grid. This virtual grid covers the map grid and
consists of sectors, which are rectangles of equal size, each
containing a group of map squares.

We call two sectors direct neighbors when they are next to
each other horizontally or vertically, but not diagonally. For
every zone, we want to have a group of sectors, where each
one is a direct neighbor of at least one other sector in that zone.
This ensures that every zone has a connected set of sectors.

Furthermore, we want every pair of zones which are con-
nected in the MLML graph, to have at least one pair of sectors
(one from each zone), which are direct neighbors. This will
allow us to later specify that the two zones have an edge
between these two sectors.

In our approach, we assign each zone a starting sector, by
taking the average of the zone vertices obtained with Sammon
mapping and choosing the sector which holds this position.

After assigning each zone a starting sector, we go through
the edges from MLML and attempt to connect each pair of
zones with a chain of direct neighbors. First, we calculate
a path between both starting sectors using a Bresenham
algorithm6. This ensures that we always have direct neighbours
along the way. Next, we traverse the path and try to find a
chain of sectors, which start from one of the zones, ends in
the other, and has only empty sectors along the way. If such
a chain exists we assign the sectors fairly to both zones. So,
ultimately, a path starts in one zone, goes along sectors of this
zone, and then continues in sectors of the second zone.

Now that we have assigned sectors for all of the zones,
we proceed to fill the map grid with a basic Voronoi method.
Inside every sector, we generate three random control points
with the sector’s id. We only allow the points to be generated
at a certain distance away from the sector’s sides. We assign
each grid square the id of the control point which is closest
to the center of the square. We only have to take into account
the current and neighboring sectors, because further control
points can never be closer.

6https://www.redblobgames.com/grids/line-drawing.html#stepping

While testing the algorithm, we observed that using too
few control points caused neighboring sectors to be separated
by another sector. However, when using too many control
points, the sector boundaries immediately took the form of
a standard grid, without any irregularities. The three random
control points allow the Voronoi grid some randomness, while
not restricting the sectors to have any specific shape.

Because of the allowed movements in HoMM3, the borders
between sectors of different id’s can not have diagonal gaps. To
decide which grid squares must form a border, we iterate over
the squares and compare a candidate to each of its 8 neighbors.
When comparing the square with a neighbor, we check if both
squares have an id of an assigned sector and if the candidate
square has a larger distance to its control point. If it does,
it is changed to a wall. Otherwise, it remains unchanged and
we continue through the map. The gates between two adjacent
zones are placed in zone border tiles such that adjacent squares
belong only to one of that zones or are neutral.

Fig. 3. On the left, result of the Sammon mapping. On the right, final
partitioning of a grid, including gates between the appropriate zones. (For this
partitioning example, we distorted the graph embedding results to forcefully
fill the entire map.)

E. Strategic Features Placement

To guarantee a decent level of balance, we have to place
the strategic features such that all players have similar access
to the corresponding objects in the corresponding zones. If,
for example, one of the players has a mine near their town,
while all the others have it on the far end of the zone, this
will result in a large difference in their early advancement.

The task can be defined as follows. We are given a set
of corresponding zones and, for each of them, coordinates of
entrances, i.e. tiles where a player can enter the zone. Given
a set of strategic features, the following distances should be
preserved:

• between corresponding features in corresponding zones
(feature-to-feature),

• between corresponding objects and corresponding en-
trances in corresponding zones (entrance-to-feature),

• if the zone is a buffer, between k-th nearest object for
any two entrances in the zone leading from lower-level
zones (for k less equal than the number of features).

The first two rules focus on fairness between corresponding
zones. The last rule ensures that different players arriving from



their entrances to one particular zone will encounter a strategic
feature in a similar distance.

We aim to optimize the features placement via an evolution-
ary algorithm. A genotype contains the exact position of every
feature. We start with computing all valid feature spots in a
zone and use them to randomly generate an initial population.

To compute the evaluation function, the distances between
all pairs of objects are calculated by BFS. For individuals with
overlapping features, the fitness is infinity. Otherwise, we try
to minimize the sum of squared differences between corre-
sponding distances included in the above list, e.g. we minimize
the discrepancy between the distance from the entrance to the
mine in zone A and the distance to the corresponding objects
in zone B, assuming A and B are corresponding.

For breeding, we choose
√
n best individuals and perform

a uniform crossover on every possible pairing. The mutation
operator replaces each position in an offspring genome with
a valid random position. We discard all identical individuals
and preserve best individual obtained so far (i.e. elitism of size
1). The algorithm stops after a given amount of time or if no
better solution has been found in a number of past iterations.

Assuming we have the features placed, we can finally place
the roads. We calculate a minimum spanning tree connecting
all features and entrances on the zone and set the correspond-
ing tiles as road tiles in this zone and all corresponding ones.
The example is shown in Figure 4.

Fig. 4. The map after the placement of strategic features and roads (red tiles
are zone borders, yellow tiles are roads)

F. Filling Space with Cellular Automata

It is characteristic for HoMM3 maps to contain irregularly
placed obstacles, which allow placing treasures nearby and
effectively guarding them. Since usually the exact locations
of the obstacles do not heavily influence the map’s properties,
we can safely use cellular automata to fill the space randomly,
and, if required, do some small fixes later.

In the standard case, cellular automata operate on two types
of tiles: white and black. In each step, every cell can change
its color according to the rules. In our case, we need to fill the
interior of the zones without erasing borders separating zones
or blocking roads set by the feature placing algorithm. Thus,
we added two additional colors: super-white (which works as

white but cannot be blacked) and super-black (which works
conversely). This is more general then, e.g. overriding tiles
with roads and borders after CA step because we are able to
additionally parametrize automata behavior by giving separate
weights to these special colors.

IV. IMPLEMENTATION

After all the steps presented in the previous section the
main structure of the map is complete. The visualization of
the example run we have described is shown in Figure 5.

Fig. 5. The in-game minimap of the example map we have generated. This
is an M-size map, for 4 players, and with all generation parameters set to
default value.

Our map generator is written mainly in Lua, and partially in
C++ and Python. We used Löve7 for GUI. To generate maps in
proper format, we used (and slightly fixed) C++ homm3tools
library [34], for which we developed Lua API8.

Graph embedding and visualization was done with NumPy9,
SciPy10, and Matplotlib11 Python packages. We used open
source implementation of Sammon mapping from Github12.

Evolutionary algorithm for features placement was run with
population of size 100, mutation rate of 0.01, and time limit
set to 1 second.

V. DISCUSSION

We proposed a method that, in theory, can generate balanced
map layouts for Heroes of Might and Magic III. The algorithm
is highly modular, which proved to have both advantages and
disadvantages. On one hand, we were able to independently
develop and improve individual components. The randomized
nature of some of them gives an opportunity to run them
several times and pass the best result to the next step. It also
means we can obtain varied results using the same parameter
set. The partial visualizations of the process would not be
possible without splitting the generator into separate phases.

On the other hand, ensuring truly balanced outputs turned
out to be very hard. One of the biggest challenges comes from

7https://love2d.org
8https://github.com/radekmie/homm3lua
9http://www.numpy.org/
10https://www.scipy.org/
11https://matplotlib.org/
12https://github.com/tompollard/sammon



the cumulation of errors. Each step heavily depends on getting
a reasonable input. If the previous phase fails to produce it, we
usually have no way to fix it, since the components are almost
completely independent. For example, MLML step does not
know if the graph it is making can be nicely drawn on a
plane. This sometimes results in scenarios, where Sammon
mapping cannot provide a good embedding, and the final map
is useless. Introducing some backtracking could help with this
issue, but it is going to impossible to completely avoid the
problem without some coupling between phases.

We also need to mention that at this point the balancing
is only theoretical, and we did not have the opportunity to
actually test the maps by playing them. The game HoMM3 is
heavily based on moment-to-moment exploration, so getting
the full experience requires all of the game-specific, low-level
features to be present.

Although we developed our algorithm mainly for the pur-
pose of generating Heroes of Might and Magic maps, it is
generic in nature and can be adapted to other productions.
The algorithm requires the existence of zones and strategic
features, but these concepts occur commonly, and their equiv-
alents can be easily defined in many strategy games.

If we consider real-time strategy game StarCraft [35], [36],
the partitioning into zones is not so clear. However, we can still
keep main routes as edges between some distinguished map
areas and specify their terrain style (level of openness, high
ground flag, the existence of chokepoints). We can identify
resources (minerals, rich minerals, vespene gas) and control-
lable Xel’Naga Towers as strategic features. Destructible rocks
could be encoded similarly to outers.

Another famous RTS, Warcraft III [37], is even more
suitable for our method, mainly because of the number and sig-
nificance of potential strategic features. This category includes
not only gold mines, but also all neutral buildings (taverns,
mercenary camps, marketplaces, etc.), creeps (neutral monsters
of various strength that give experience and item rewards), and
even teleports (called way gates).

As a slightly different example, we will mention Anno 1602
[38], an economic strategy game, usually taking place on a
map consisting of multiple islands. Each island naturally maps
to a zone, where resources, like gold or iron, are its features.
Other strategic features may include island-specific crops, like
cocoa and cotton, or the size of an island. The distinction
between local and buffer zones is conventional in this case.
We can simply assume that local zones form an archipelago
of islands closest to the specific player, while buffer zones are
islands equally distant from more than one player.

A. Future Work

The goal of a future work is to improve and extend the
algorithm, and to finish the remaining parts of our HoMM3
map generator. In particular, we want to develop evaluation
functions to estimate output quality after each stage of the
procedure. It will let us to use generate-and-test approach, i.e.
run each step several times and choose the best outcome.

We also plan to finish the full implementation of all
HoMM3-specific features. Water and whirlpools should be
implemented as the special type of buffer zones and teleport-
like features. Underground map level should be formed by re-
moving some buffer zones before mapping MLML onto a grid,
and placing them below adjacent zones, so the subterranean
gates can be placed in the overlapping areas. Grail should be
placed in a buffer zone close to gameplay-based centers of the
map, i.e. areas equally difficult to reach for all players.

We can also consider generating maps that are deliberately
imbalanced. The simplest example for HoMM3 is a map
containing AI-only players, who should have some handicaps
(richer zones, more starting towns, etc.). This can be done by
generating two different LML graphs – for human players and
for AI-only players. Then, in the MLML phase, these graphs
have to be merged in the right way. This is one of the non-
trivial extensions we plan to implement and test in the future.

The remaining parts we need to include in our map genera-
tor are map aesthetics and low-level features placement. Apart
from functional properties of the map, we should also take
into account its visual aspects. HoMM3 contains various types
of obstacles like trees, lakes, rocks, or mountains, ranging in
size from 1 × 1 to 3 × 5 map tiles. To make generated map
consistent and visually pleasant, the choice of obstacle should
depend on its surroundings: terrain type, other obstacles, and
strategic features. It is natural that sawmill should be near the
trees and crystal cavern is placed in the mountains. Another
example is a water wheel, which is a map object that should
be placed on a river.

Zones and strategic features determine the outline of the
game, but no less significant are low-level features scattered
around the map: resources, artifacts, various special objects,
and creatures guarding them. Their proper placement is the
most important and challenging aspect of a future work, as the
entire gameplay can be seen as a sequence of losses and gains.
For example, a player loses some troops fighting wandering
creatures and then picks up an artifact they were protecting.

In a less complicated domain, the solution could be to use
evolutionary algorithms with balance-testing fitness function
depending on AI agents simulating the players’ behaviors [10],
[39], [40]. In our case, to control the loss-gain loop on the
map, we need to estimate players’ capabilities based on our
knowledge about the game mechanics.

It is for this reason that we introduced zone levels, as their
semantics is closely correlated with player strength. Let us
assume that we want a zone of level four to be attainable
roughly on turn 15. To achieve that we need to estimate
player’s strength at that moment. It is possible knowing their
starting town and the content of closer zones of lower levels.
Thus, the remaining part is to place a proper creature at the
entrance of this zone. We have developed simulation-based
unit value estimation program for HoMM313, which is able
to, for any amount and type of creature, estimate the number
of other creatures needed to match its strength. We plan to

13https://github.com/maciek16180/h3-fight-sim



use these estimations to ensure the proper level of challenge
when placing guarding creatures.

VI. CONCLUSIONS

In this paper, we focused on generating a balanced map
layouts, with obstacles, partitioning into zones, and fair place-
ment of the strategic features. We combined a variety of
known methods including graph grammars, Voronoi diagrams,
cellular automata, and evolutionary computation with novel
approaches, like feature-redistribution graph grammar algo-
rithm or MDS plus Bresenham-based layout solver.

The proposed algorithm was implemented in a map gener-
ator which we are developing for Heroes of Might and Magic
III. Although it is not finished yet, it produces fully playable
HoMM3 maps in proper h3m format. We argue that there
is a community need for such a tool, especially because the
recently released HD edition of the game does not contain the
original map generator.

We presented a step-by-step description and visualization of
our method, and discussed the details of its implementation.
Lastly, we have shown that the presented algorithm is generic,
and can be applied in other strategy games.
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