
Regular Language Inference for Learning Rules of

Simplified Boardgames

Jakub Kowalski

Institute of Computer Science, University of Wrocław

Wrocław, Poland

jko@cs.uni.wroc.pl

Andrzej Kisielewicz

Institute of Mathematics, University of Wrocław

Wrocław, Poland

Andrzej.Kisielewicz@math.uni.wroc.pl

Abstract—We deal with the problem of learning game rules
by observing the play, the study initiated by Björnsson for the
class of Simplified Boardgames, describing a rich family of chess-
like games. In this paper we restate the problem in terms of
regular language inference and improve Björnsson’s algorithm
combining applications of existing DFA learning algorithms with
our domain-specific approach. We present the results of tests
on a number of games, including human-made and artificially
generated ones.

Index Terms—general game playing, regular language infer-
ence, simplified boardgames, deterministic finite automata

I. INTRODUCTION

The aim of General Game Playing (GGP) [1] is to develop

a system that can play a variety of games with previously

unknown rules. Unlike standard AI game playing, where

designing an agent requires special knowledge about the game,

in GGP the key is to create a universal algorithm performing

well in various situations and environments. After the launch

of the annual International General Game Playing Competition

(IGGPC) in 2005 [2], [3], many new languages have been

developed to describe certain classes of games [4], [5], [6], [7]

and other competitions have been proposed [8]. Identified as

a new Grand Challenge of Artificial Intelligence, GGP consists

of many research challenges requiring combining a number

of domains, such as knowledge representation, searching,

planning, reasoning, and machine learning [9].

In [4], Björnsson has proposed a new scenario, where the

game rules should be learned by observing others play, rather

than obtained from a given description. This partially coincides

with the rules of GVG-AI competition [8], where a prepared

reasoner (java object allowing state manipulation) is given in-

stead of the raw game rules. Björnsson’s approach concentrates

on learning deterministic finite automata (DFA) which are used

to encode learned rules in a class of games introduced by the

author and called Simplified Boardgames. The proposed class

is substantially narrower than GGP systems mentioned before,

yet more general and concise than previous such approaches

[10], [11]. As the DFA representation favors the efficiency of

game state manipulation, possibilities of implementing such

mechanism to support GGP players have been considered.

In this paper, we deal with the problem of learning

game rules by observing. We continue the study initiated

by Björnsson in [4] for the class of Simplified Boardgames,

focusing on efficient learning of the observed boardgame

moves. First, we consider applications of existing DFA learn-

ing algorithms for the task of learning piece movements from

the set of game records and restate the problem in terms of

Regular Language Inference [12]. Secondly, we propose our

domain-specific algorithms to ensure better efficiency and a

higher chance of obtaining a correct approximation of the

actual DFA, assuming incompleteness of given training data.

We test all presented approaches combining various learning

algorithms with different procedures checking DFA consis-

tency in a number of games, both human-made and artificially

generated. Following Björnsson’s approach we consider two

types of training data: GGP-like, where for every position all

legal moves are listed, and human-play-like, providing more

sparse data where only the move actually made by a player

has been recorded.

The paper is organized as follows. Section II provides the

necessary background for the class of Simplified Boardgames,

learning by observing, and Regular Language Inference. In

Section III, we formally state the problem and analyze selected

existing approaches from the theoretical point of view. In

Section IV, we introduce new consistency checking proce-

dures, and in Section V we present our new algorithm learning

piece’s moves by observing. Finally, Section VI presents the

results of experiments evaluating the performance of all the

considered approaches.

II. PRELIMINARIES

In this section we introduce domains relevant to our study,

providing necessary algorithms and terminology.

Let Σ∗ be the set of all possible words over the alphabet Σ.

For DFA A = 〈Q,Σ, δ, q0, F 〉, where Q is the set of states, q0
is the initial state, F ⊆ Q is the set of accepting states, and

δ : Q×Σ→ Q the transition function (which, in our study, is

usually a partial function), by L(A) we denote the language

accepted by A.

A. Simplified Boardgames

Simplified Boardgames is the class of fairy chess-like games

introduced by Björnsson in [4]. The language describes turn-

based, two-player, zero-sum chess-like games on a rectangular

board with piece movements described by regular languages

and independent on the move history. It was slightly extended

in [13], and used as a comparison class for assessing the level

of Stanford’s GGP programs.

Here we follow the class formalization from [14] to pro-

vide a shortened necessary introduction. The game is played

between the two players, black and white, on a rectangular

board of size width×height. White player is always the first

to move. Although it may be asymmetric, the initial position

is given from the perspective of the white player, i.e. forward

means “up” for white, and “down” for black.

During a single turn, the player has to make a move using

one of his pieces. Making a move is done by choosing the

piece and changing its position according to the specified

movement rule for this piece. At any time, at most one piece

can occupy a square, so finishing the move on a square con-

taining a piece (regardless of the owner) results in removing

it (capturing). No piece addition is possible. After performing

a move, the player gives control to the opponent.

For a given piece, the set of its legal moves is defined as

the set of words described by a regular expression over an

alphabet Σ containing triplets (∆x,∆y, on), where ∆x and

∆y are relative column/row distances, and on ∈ {e, p, w}
describes the content of the destination square: e indicates an

empty square, p a square occupied by an opponent piece, and

w a square occupied by an own piece. A positive ∆y means

forward, which is a subjective direction and differs in meaning

depending on the player.

Consider a piece and a word w ∈ Σ∗ that belongs to the

language described by the regular expression in the move-

ment rule for this piece. Let w = a1a2 . . . ak, where each

ai = (∆xi,∆yi, oni), and suppose that the piece stands on a

square 〈x, y〉. Then, w describes a move of the piece, which is

applicable in the current board position if and only if, for every

i such that 1 ≤ i ≤ k, the content condition oni is fulfilled

by the content of the square 〈x+
∑i

j=1 ∆xj , y+
∑i

j=1 ∆yj〉.
The move of w changes the position of the piece piece from

〈x, y〉 to 〈x+
∑k

i=1 ∆xi, y+
∑k

i=1 ∆yi〉. An example of how

move rules work is shown in Figure 1.

8 rZkZ0Z0s
7 o0Zna0o0
6 0ZbZ0Z0o
5 ZpZnZpZ0
4 0ZPO0Z0Z
3 Z0ZQZNA0
2 0O0Z0OPO
1 S0Z0Z0J0

a b c d e f g h

Fig. 1. A chess example. Two legal moves for the queen on d3 are shown.
The capture to f5 is codified by the word (1, 1, e)(1, 1, p), while move to a3
is encoded by (−1, 0, e)(−1, 0, e)(−1, 0, e). The move to f3 is illegal, as in
the language of queen’s moves no move can end on a square containing own’s
piece. The d5 − f6 knight move is a direct jump codified by the one-letter
word (2, 1, e).

B. Learning by Observing

The initial purpose of introducing Simplified Boardgames

was to study capabilities of learning game rules, given records

of previously played games [4]. As terminal conditions were

deliberately kept simple, the proper task comes to learning the

languages of piece movements. This extends the directions of

the GGP research, beforehand focused mainly on learning how

to play a given game.

Two types of training data were proposed: a real-world

single move known scenario – where the observer sees only

the performed move, and a GGP-like all legal moves known

scenario – where for every position all possible legal moves

are visible. The latter case reflects the situation when we

want to learn rules of the game given only the reasoner able

to compute moves, advance game position, and detect the

terminal states. Such novel, entirely simulation-based approach

to general playing is used for General Video Game Playing

Competition.

In [4], the algorithm for learning a DFA consistent with

the observed game positions has been presented. To improve

learning rate, some additional assumptions were made, al-

lowing unseen moves to be accepted as correct if certain

conditions were met. An extended approach, using slightly

modified Simplified Boardgames domain, has been recently

presented in [15]. The language has been modified to support

basic piece addition and deletion. The process of learning was

performed using the LOCM acquisition system [16], [17],

which is an inductive reasoning system that learns planning

domain models from action traces.

Other approaches described in the literature are mainly

logic-based. In [18], chess variant rules described as first-

order logic programs are learned using positive and negative

examples, background knowledge, and the theory revision.

The system that learns board-based games through the video

demonstration using logic and descriptive complexity is pre-

sented in [19]. Alternatively, an interaction based approach to

learn rules of simple boardgames from the dialogue with a

human user is described in [20].

C. Regular Language Inference

Regular Language Inference is the problem of finite au-

tomata identification using labeled samples: given a disjoint

sets of words S+ containing words belonging to the target

language L, and S− containing words that do not belong to

L, we ask what the size of the minimal DFA consistent with

these sets is [12]. Gold ([21]) has proven that this problem

is NP-hard, and Pitt and Warmuth ([22]) showed that given

labeled samples corresponding to automata with n states, there

is no polynomial algorithm that guarantees output DFA with

at most n(1−ǫ) log log(n) states for any ǫ > 0.

The problem may be efficiently solved by polynomial

algorithms if sets S+, S− fulfill additional restrictions, i.e.

they are somehow representative. The first algorithm, known as

TB/Gold was introduced by Trakhtenbrot and Barzdin in 1973

[23], and rediscovered by Gold five years later [21]. In 1992,

RPNI (Regular Positive and Negative Inference) algorithm was

proposed independently by Oncina and Garcia [24], and Lang

[25]. It guarantees that the obtained DFA is consistent, and is

equivalent to the target DFA if S+, S− contains the so-called

characteristic set. Both theoretical analysis and experiments

support the thesis that the results obtained by RPNI are

better, and it converges faster than TB/Gold algorithm [26].

The pseudocode and detailed description of RPNI algorithm

are provided in Section III-C. Several modifications of RPNI

have been studied, e.g. incremental version [27], with faster

convergence for some languages subfamilies [28], and suitable

for PAC learning [29].

III. BOARDGAME RULES INFERENCE

We are dealing with the situation where an agent observes

a number of plays between some players and, by observing,

it should learn the rules of this game. Assuming we restrict

possible games to the class of Simplified Boardgames, where

the main challenge consists of discovering the rules of piece

movements, the problem can be stated as a specific variant of

the Regular Language Inference.

On the one hand, this gives us a possibility to take advantage

of well-known generally applicable algorithms. On the other

hand, as the learning domain is narrow and characterized by

certain properties, it should be possible to create more effective

domain-specific learning algorithms.

A. Problem Statement and Model

Let Σ∗ be the set of moves for a given Simplified

Boardgame, i.e. it contains words over the alphabet of

(∆x,∆y, on) triplets. Given data obtained by observing

movements of a piece p, there exist the partition of Σ∗ into

the following languages: the language S+ of observed legal

moves, the language S− of known illegal moves, the language

S0 containing all words that are impossible to perform from

any square on the board, and S? containing all the other words.

So, if w ∈ S?, then it is theoretically possible that w belongs

to Lp (the language of legal movements of p), yet there is no

evidence in the data that it is legal or not.

Let us consider learning scenarios proposed in [4]. In the

single move known scenario the S− set is always empty, and

S? may be non-empty. In the all legal moves known scenario

S− is not empty, yet we can still have words in S?.

To meet the reality of Simplified Boardgames, the afore-

mentioned languages have to satisfy the following properties.

Languages S+, S− and S? are finite and closed on taking

substrings, i.e. for any w ∈ S+∪S−∪S? every substring of w

also belongs to S+∪S−∪S?. Language S0 is infinite, and such

that for all w ∈ S0 and a ∈ Σ, we have aw ∈ S0 ∧ wa ∈ S0.

Also, there exist a procedure O : Σ∗ → {T, F} which, for

given w, decide in time Θ(|w|) if w ∈ S0. (We can iterate

through the word summing relative distances and checking if

the board size was exceeded.)

To approximate the size of all substring-closed sets we

present the following observation. We use standard |S| nota-

tion to denote the cardinality of the set S, and ||S|| to denote

the sum of the lengths of words in S.

Observation 1. Given board of size n × n, and S = S+ ∪
S− ∪ S?. We have that:

2

n2−1∑

k=1

3k
(n2 − 1)!

(n2 − 1− k)!
≤ |S| ≤ n2

n2−1∑

k=1

3k
(n2 − 1)!

(n2 − 1− k)!
,

which estimates the total number of moves that can be made

on such a board.

Notice that in the case of standard chess-like games, the

number of legal moves (which is a superset of S+) is very

small compared to the left-hand side of (1). This causes that

explicit occurrence search in S− or S? is highly inefficient in

comparison to checking set membership via O function.

For a given piece p, let A be a DFA approximating Lp based

on given observations. It is required that S+ ⊆ L(A) and

L(A) ∩ S− = ∅. However, there is some freedom concerning

relations between L(A) and the remaining sets. Whether

L(A) ∩ S0 will be empty or not, in practice do not influence

the results generated by A. During the move generation phase,

movements that are impossible to be made on the current board

position are simply excluded.

The question whether L(A) could contain some words (and

which one) from S? depends on the chosen policy. It is safe

to assume that every unobserved move is treated as illegal.

This ensures that the player based on A will never produce

a move that could cause e.g. an instant loss. On the other

hand, admitting some words from S? allows to simplify the

language definition and minimize produced DFA. Moreover,

without extending the set of accepted words, it is impossible

to obtain the optimal automaton given data containing only

partial knowledge about Lp.

B. Björnsson’s Algorithm

First, we make some observations concerning the algorithm

for learning piece rules proposed by Björnsson in [4]. Because

of lack of the space, we have to refer the reader to [4] for

details. We describe only a general structure of this algorithm.

Two main parts of the algorithm are the automaton learning

and the consistency checking. The automaton learning ([4,

Algorithm 2]) begins with constructing for a given piece

a Prefix Tree Acceptor (PTA) from the training data. The

whole procedure is based on the priority queue, containing

candidates for the smallest consistent DFA. The maximal

number of iterations of the main while loop is limited by the

MaxExpansions constant. In each step, the smallest DFA is

taken from the queue, and it is compared against the smallest

DFA obtained so far. We iterate through the pairs of states,

which are then merged (collapsed) forming a new automaton.

There is a constant K that prevents considering the states

which are too distant from each other.

The resulting automaton is the subject of the consistency

checking procedure ([4, Algorithm 1])1. An accepted definition

1In [4], the algorithm immediately returns True if the first of the con-
sidered positions fulfills the desired property. The line 8 of the algorithm
containing ”return movesDFA ⊆ pos.moves(sq)” should be rewritten to
”if (movesDFA ⊃ pos.moves(sq)) then return False end if”.

of consistency with the training data is that DFA should

generate all moves known to be legal, and no moves known to

be illegal. It is checked straightforwardly in the all legal moves

known scenario. To handle the single move known scenario

additional assumptions have been made. An unobserved move

is accepted if it was observed for some other piece or certain

essential parts of this move were observed.

If the automaton passes the consistency test it is inserted

into the priority queue. Since the merging procedure can return

a non-deterministic automaton, an additional determinization

procedure is used. The theoretical time complexity of the

algorithm is exponential. More precisely, we have

Observation 2. Let S+ be the language accepted by the

piece’s prefix tree acceptor pt, and C(k, td) the complexity

of consistency checking the given training data td and a DFA

with k states. Then, assuming that the MaxExpansions and

K parameters are constant, the complexity of LearnDFA(pt,td)

may be bounded by

O(||S+||(2
||S+|| + C(||S+||, td))).

The part 2||S+|| is the worst case rarely achieved in practice.

The dominant part is the consistency checking, which requires

browsing through all the observed positions, generating move-

ments, and performing subset checking operations.

An important observation is that in some situations, DFA’s

returned by [4, Algorithm 2] generate illegal moves. For

example, consider the limited rider piece that moves in one

direction for a given limited distance. Examples of such pieces,

like Short Rook or Cloud Eagle can be found in various fairy-

chess games [30]. Let D be a training data in the all legal

moves scenario, such that for a limited rider Q all its legal

moves were observed (they belong to S+), but any extension

of its movements (i.e. one-step longer rides) are in S?. We

have the following.

Theorem 1. If Q is a limited rider in a game G, and D a

training data described above, then the DFA returned by the

[4, Algorithm 2] generates illegal moves.

Theorem 2. Consider single move known scenario and a

game G containing a limited rider Q and another piece R
with unlimited ride, i.e. satisfying {aji , a

j−1
i bi} ⊆ LR∪S0 for

all j > 0. Let training data D be such that all the moves of

the form a
j
i and a

j−1
i bi are observed for the piece R. Then,

the DFA returned by [4, Algorithm 2] generates illegal moves.

(Proofs of these results are presented in [31]). The practical

consequence of Theorem 2 is that given any limited rider piece

occurring next to a similar not limited rider (e.g. Short Rook

and Rook, Lion Dog and Queen) the learned rules of these

figures can be indistinguishable.

The problem addressed in Theorems 1 and 2 lies mainly in

the construction of the provided training data, which is hard to

detect and handle on the algorithm’s side. However, by careful

designing of learning and checking procedures, we should be

able to guarantee more safety, and more intuitive restrictions

on the produced DFA. We will present approaches that try to

fix the problem from two sides.

First, we establish dependencies between actually discov-

ered legal moves and hypothesis concerning additional moves

from S?. By that, we add additional safeguard and can

restrict consistency checking to discard ,,highly improbable”

candidates even if they are consistent with the given data.

Secondly, we force consistency checking function to check

only those automata we strongly believe they may be good,

by using a proper automata learning algorithm, based on more

sophisticated heuristic strategy of merging states.

C. RPNI

An alternative solution is to use one of the existing poly-

nomial algorithms for identification DFA’s from samples, e.g.

Gold [21] or RPNI [24]. Due to its better performance ([26]),

we have chosen RPNI as our test algorithm for boardgame

move learning.

The arguments of this algorithm are the set of positive

samples S+ and the set of negative samples S−. Initially, a

prefix tree acceptor based on S+ is constructed. The algorithm

searches for a pair of states, such that after merging these

states the automaton does not accept any word from S−. The

states are chosen so that one of them is a root of a subtree

of the original PTA. The merging procedure disconnects

this subtree, merges the states, and then folds the subtree

into the constructed DFA so that the resulting DFA remains

deterministic. The complexity of the procedure is linear in the

size of the folded subtree. For the detailed description, the

reader is referred to [12, Section 12.4].

Given the sets of positive samples S+ and negative sam-

ples S−, the time complexity of RPNI is O((||S+|| +
||S−||)||S+||

2). However, considering the application to Sim-

plified Boardgames and the estimation given in Observation

1, this complexity is unpractical. For this reason, we have to

modify consistency checking part of the algorithm from simple

iteration through S− set to some more complex function (e.g.

the one used in Björnsson’s algorithm). Then we have

Observation 3. Let S+ be the language accepted by the

piece’s prefix tree acceptor pt, and C(k, td) the complexity

of consistency check given training data td and DFA with k

states. Then, the complexity of RPNI algorithm is

O((||S+||+ C(||S+||, td))||S+||
2).

The algorithm remains polynomial in the size of the initial

prefix tree acceptor, yet again the dominant part depends on the

construction of the consistency checking procedure. For that

reason, in the next section, we propose alternative procedures

focused on efficiency.

IV. EFFICIENT CONSISTENCY CHECKING

Our definition of consistency is that a language has to

contain all positive samples (S+) and reject the negative ones

(S−). In the case of boardgame movements learning, there are

many interpretations of what the negative sample is. If we are

able to observe all legal moves in any position, every unlisted

move fitting within board has to be considered as negative. All

the other moves that have not been rejected, can be labeled in

any way.

This is the same problem (of fitting into an unknown target

language) like in the standard language inference problem, yet

here we know the set S0 that does not matter at all. Also, we

should be able to predict correct and incorrect moves basing

on our boardgame related intuition.

A. Fast Consistency Check

Assume the scenario when our priority is to ensure our

algorithm learns only correct moves, i.e. we treat S? in the

same way as S−. We are looking for the language L such that

S+ ⊆ L and L ∩ (S− ∪ S?) = ∅, (1)

and the minimal DFA representing L has the smallest number

of states.

For the given prefix tree acceptor T defining S+ and

DFA A approximating L, the optimal procedure checking the

consistency of A is described as Algorithm 1. Starting with

the initial state of A, and the root of T , we traverse through

A, simultaneously matching visited states with the states in T .

The algorithm returns False if there is a mismatch in the state

acceptance within the T or there is an accepting state outside

T but within the board.

Algorithm 1 FastCheck(A = 〈Q,Σ, δ, q0, F 〉, x ∈ Q,

T =〈Q′,Σ, δ′, q′0, F
′〉, x′ ∈ Q′, w ∈ Σ∗)

1: for all a ∈ Σ do

2: if ∃y, y′. δ(x, a) = y ∧ δ′(x′, a) = y′ then

3: if F (y) 6= F ′(y′) then return False end if

4: if ¬FastCheck(A, y, T , y′, wa) then

5: return False

6: end if

7: end if

8: if O(wa) then continue end if

9: if F (δ(x, a)) then return False end if

10: if ¬FastCheck(A, δ(x, a), T , null, wa) then

11: return False

12: end if

13: end for

14: return True

Let as notice, that in the case of Simplified Boardgames,

complexity of the O function is additive, i.e. given w1, w2

and intermediate result of O(w1), the value of O(w1 + w2)
can be computed in time O(|w2|). The conclusion is that the

check in line 7 can be done in O(1). So the runtime of the

algorithm is linear in ||L(A)∩ (S+∪S?)||, which is the upper

bound for the worst case complexity from Observation 1.

B. Fractional Acceptance Consistency Check

Another reasonable assumption is that if a DFA representing

a language of piece movements is small and does not contra-

dict given data, then with a high probability it is correct. This

may not be entirely true when taking into account artificially

generated rules, yet in the vast majority, fairy chess pieces can

be represented by automata with a simple construction.

Basing on that, and assuming that we have ,,big enough”

training data, we can easily extend FastCheck algorithm to

allow some fraction of moves from S?. For our Fraction-

alCheckα algorithm we assume that if it produces language

L, then at most (1−α)|L\S0| generated words belong to S?.

The consequence of this assumption is that if Lp is the

language of legal moves and S+ observed valid moves then,

given
|S+|
|Lp|
≥ α, the consistency check will allow optimal DFA

despite acceptance of moves from S?. On the other hand, if the

sample is small and
|S+|
|Lp|

< α, the optimal automata will be

rejected, as the evidence supporting its correctness are judged

as too weak.

The procedure of FractionalCheckα can be described by

comparing with FastCheck as follows. Instead of returning

False in case of finding an accepted move from S?, the

algorithm has to track the number of such moves. If their

number exceeds an established threshold, then the function

has to return False, at best finishing immediately, e.g. using

the exception mechanism. In the all legal moves scenario,

the additional consistency check with S− is necessary. This

requires browsing through all the observed positions and

subset checking between observed and DFA-generated moves

(which is equivalent to [4, Algorithm 1], lines 7–8).

V. SPINE COMPACTION ALGORITHM

Both RPNI and Björnsson’s LearnDFA algorithms are in

fact general purpose methods, i.e. they do not benefit in any

way from the fact that they are applied to learning boardgame

piece rules. We would like to present our approach that, in

contrast, is entirely based on the assumption that it has to

learn rules of the chess-like piece. The goal of this algorithm

is fast learning of probable piece movements by performing

only specialized state merges and thus minimizing the number

of required consistency checks.

The main idea uses the observation that piece PTA’s usually

have a form of multiple spines with similar subtrees attached

(see Figure 2 to examine a rook-like piece example). Actual

cases may be more complicated (e.g. spine’s cycle period

greater than one), yet the idea remains similar, also in the

cases such as Checkers man piece.

Formally, given a (partial function based) DFA A and a

word w ∈ Σ∗, we define a w-spine as a path in A starting in

some state q and going along the longest prefix v of w∗ that

determines a valid path in A. In such a case w is called the

vertebra of the spine, |w| its period, and |v| its length. Each

spine is encoded in the triple (vertebra, initial state, length)
(see Figure 3). We are not interested in spines where |v| < |w|,
and discard them as not proper.

The main procedure (Algorithm 2) consists of two crucial

parts. The first one is responsible for finding all spines in a

given prefix tree automata. The other one analyzes the obtained

spines in proper order and finds the pairs of states being

candidates to merge. First, we describe both these procedures

and then present a detailed description of the outline algorithm.

0

1

2

3

4

5

6

7

8
(0, 1, e) (0, 1, e) (0, 1, e) (0, 1, e)

(0, 1, p) (0, 1, p) (0, 1, p) (0, 1, p)

0 1 2
(0, 1, e) (0, 1, p)

(0, 1, e)

(0, 1, p)

Fig. 2. An example of a chess-like piece sliding only forward. On the top the
prefix tree acceptor, on the bottom the optimal DFA for this piece (assuming
board of height 5).

A. Spines Selection and Pairs Selection

Given a prefix tree acceptor T , the task of the spine selection

is to find all proper spines with a period k. Starting from the

root r and traversing T using depth-first order, reaching depth

k provides the first candidate w for a vertebra. However, if

F (r) 6= F (δ(r, w)), then we drop the first letter of w and

continue searching for a proper vertebra. Otherwise, we have

to analyze outgoing edges. If one is labeled by the first letter of

w (say, a), and F (δ(r, a)) 6= F (δ(r, wa)) we mark (w, r, |w|)
as a proper spine, and start a new search from the current

node. If state acceptances match, we can continue extending

the current spine as long as the traversed path matches w∗. For

any other edge labeled by b 6= a, we create w′ by dropping

the first letter of w and appending b at the end and proceed

further down with w′ as a new vertebra candidate.

The procedure works recursively for a given state considered

as the actual root, candidate for vertebra, and length of the

longest spine matching so far. Example of the outcome of the

given procedure is shown in Figure 3. The time complexity is

the same as in the case of the standard DFS, i.e. Θ(|Q|) given

that we traverse only trees.

0

1

2

3 4

7

8

9

5

6

a

b

a b

c

c

c

a

a

Fig. 3. For the given PTA, the spine selection procedure returns spines
as (vertebra, initial state, length) triples. Result for k = 1: (a, 1, 2),
(c, 0, 2). Result for k = 2: (ab, 0, 3), (bb, 1, 2), (aa, 1, 2), (cc, 0, 2).

Given a w-spine, the next task is to choose a pair of

states (within geodesic distance |w|), which will be the best

candidate for merging. Our goal is to minimize a chance that

the merge result will be rejected by a consistency checking

procedure and simultaneously maximize the state reduction.

Let q and q′ be two corresponding states in a spine (i.e.

the length of the path from q to q′ is a multiple of |w|), with

outgoing vertebra edges labeled by a. In theory, it is safe to

merge q and q′ if the subtrees rooted in these states are equal

except branches initiated with a. If the property is fulfilled for

every two corresponding states in a spine, such merge does

not add any new words to the language, except for the words

longer then v.

In practice, it is enough to have this property only approx-

imately fulfilled. First of all, it is too costly to check the

equality of two subtrees. Instead, we check only the first level

equality, i.e. if for every letter b 6= a, (q, b) ∈ Dom(δ) ⇔
(q′, b) ∈ Dom(δ) ∧ F (δ(q, b)) ⇔ F (δ(q′, b)). Moreover, we

should be aware that given data might be sparse, and it is less

probable that we will have valid data concerning longer moves.

Given that, we apply a heuristic that allows corresponding

subtrees more distance from the spine root to be smaller.

The overall pair selection procedure starts with a spine root

r as a candidate for merging with δ(r, w). Then, we traverse

through the spine comparing corresponding subtrees and re-

place candidate for merging if we meet a larger corresponding

subtree. Final candidate, if the spine length remains longer

then the vertebra, is the base for the selected pair. Figure 4

presents the visualization of the process. The complexity of

the procedure is Θ(|v| · d), assuming d is the maximal degree

of a node in a spine.

1 2 3 4 5 6
a b a b a

A’ B A B A
B’

1 2 3
a b

a

A’ B A

Fig. 4. Example of the spine compaction process. On the top ab-spine rooted
in 1, with subtrees such that A′ ⊂ A and B′ ⊂ B. On the bottom the
situation after compaction: pair (1, 3) is not a safe candidate for merging, so
the states 2 and 4 were selected and merged instead.

B. The Main Algorithm

The main part of the Spine Compaction procedure is

presented as Algorithm 2. It uses a constant K indicating,

similarly as in Björnsson’s algorithm, the maximal allowed

length of the cycle. After constructing initial prefix tree

acceptor, in lines 2–7 we search for all spines not exceeding

period K, starting from the children of the root. Thus, we

explicitly exclude PTA root for being selected as a spine

root, to prevent it from being a part of a cycle (which is an

assumption supported by our experiments). In lines 8–11, we

investigate each spine to select pairs for further merging.

What remains, is to try to merge every pair and check

for consistency (lines 13–18). Very important is the order of

applying merge operations. Our strategy is to compact spines

with shorter vertebra first, starting with the longest spines.

The merging function (line 15) is a deterministic merge used

in RPNI algorithm. At this moment, we operate on states

being the sets of original states, to be able to track merging

process. We maintain a set of pairs that resulted in inconsistent

automata (lines 12, 17), which is used to skip unnecessarily

repeated computations (line 14). Additionally, we prevent pairs

to create a multiloop, which is an experience-based heuristic,

as fairy-chess pieces representations rarely have one. To check

this condition it is enough to analyze δ values for the states

in current pair. Finally, we minimize the resulting automaton.

Observation 4. Let S+ be the language accepted by the

piece’s PTA pt, and C(k, td) the complexity of consistency

check given training data td and DFA with k states. We

can estimate upper bound on the number of spines selected

in Algorithm 2 by O(||S+||
2). Then, the complexity of the

SpineCompaction algorithm is

O((||S+||
2 + C(||S+||, td))||S+||

2).

Algorithm 2 SpineCompaction(Piece pt, TrainingData td)

1: A = 〈Q,Σ, δ, q0, F 〉 ← constructPTA(pt, td)
2: spines← ∅
3: for all a ∈ Σ if 〈q0, a〉 ∈ Dom(δ) do

4: for k ← 1 to K do

5: spines← spines∪A.SelectSpines(k, δ(q0, a), ε, 0)
6: end for

7: end for

8: pairs← ∅
9: for all s ∈ spines do

10: pairs← pairs ∪ {A.SelectPair(s)}
11: end for

12: forbidden← ∅
13: for all p ∈ pairs.OrderByPriority() do

14: if p ∈ forbidden ∨ isMultiloop then continue end if

15: A′ ←MergeAndFold(A, p)
16: if consistent(pt,A′, td) then A ← A′

17: else forbidden← forbidden ∪ {p} end if

18: end for

19: return minimize(A)

VI. EXPERIMENTS AND EMPIRICAL EVALUATION

We have performed experiments to compare the three pre-

sented learning algorithms paired with different consistency

check functions in both the single move known and all legal

moves scenarios.

For the all legal moves scenario we have prepared 20

datasets per game, each containing record of 50 plays gen-

erated using two random agents playing against each other.

In the case of the single move scenario, the number of play

records in each dataset was increased to 1000. The maximum

game length was set to 80 moves per player in all cases.

Due to the symmetry of games, we have performed learning

only for the white player (results presented in [4], [15] show

no significant difference for white and black in the case

TABLE I
EXPERIMENT RESULTS FOR THE all legal moves SCENARIO.

Consistency Correct size (%) Errors (%)
Check Bjö. RPNI SC. Bjö. RPNI SC.

Björnsson 87.6 91.5 87.3 4.9 9.1 7.6

Fractional0.5 87.6 89.9 84.9 4.9 6.3 7.6

Fractional0.6 89.0 89.8 86.6 2.4 4.0 5.0

Fractional0.7 87.1 87.1 87.1 2.4 3.5 3.2

Fractional0.8 85.6 85.5 85.6 2.4 3.7 3.2

Fractional0.9 73.7 73.5 73.7 2.4 2.7 3.9

Fast 69.3 69.3 69.3 0 0 0

of such games). If not stated otherwise, the MaxExpansions

constant of Björnsson’s algorithm was set to 20, and K used

in Björnsson’s and Spine Compaction algorithms was set to 2.

All experiments were run on 2.60GHz Intel Core i7-6700HQ

processor.

A. Games

We have used as a testbed 8 fairy chess games, containing

41 pieces altogether. The chosen games can be divided into

three categories. The first one consists of simplified versions

of known boardgames or their variants. It includes chess,

Los Alamos (small chess variants without bishops), Tamerlane

(large 10×11 game containing many non-standard pieces like

giraffe, camel, picket), and a breakthrough variant of Checkers.

(See [32], [4] for more detailed game descriptions.)

The other three games are the result of procedural content

generation algorithms [33], [34]. Thus, they all contain only

non-standard pieces. The last game was handcrafted especially

to fool unaware learning algorithms. It contains two special

pieces that can move horizontally like a rook without capturing

moves, yet with limited movement lengths. The initial position

is constructed such that every move exceeding these lengths

is impossible due to the obstacles. Thus, the setup fulfills pre-

requisites given in the Section III-B, and there is no evidence

of nonconsistency when assuming the (1, 0, e)∗ + (−1, 0, e)∗

language for these pieces.

B. Results and Conclusions

Tables I and II show the results for the all legal moves and

single move known scenarios (Spine Compaction algorithm is

abbreviated as SC). For every (learning algorithm, consistency

check) pair, we have computed the percent of generated

automata with the optimal size (which is the task of regular

language inference), and the percent of automata generating

consistency errors. By an error, in this context, we mean a

non-empty intersection with S− of the piece’s true language.

These data visualize the trade-off between the rapid language

expansion followed by the DFA size reduction and performing

only minor adjustments to the initial prefix tree acceptor.

Runtimes of all experiments are presented in Table III.

The experiments show that our SpineCompaction learning

algorithm provides most accurate results in the single move

known scenario of learning, and comparable although more

erroneous results in the GGP-like all legal moves known sce-

nario. Moreover, it requires much less time for learning than

TABLE II
EXPERIMENT RESULTS FOR THE single move known SCENARIO.

Consistency Correct size (%) Errors (%)
Check Bjö. RPNI SC. Bjö. RPNI SC.

Björnsson 73.7 70.6 73.7 5.4 19.8 9.6

Fractional0.6 88.7 61.5 87.3 6.8 40.4 6.1

Fractional0.7 89.9 65.7 89.8 4.9 37.6 2.8

Fractional0.8 88.0 64.6 88.0 4.5 34.0 4.4

Fractional0.9 73.3 71.5 73.3 3.7 14.4 3.4

Fast 68.5 68.5 68.5 0 0 0

TABLE III
LEARNING TIMES (IN SECONDS).

Consistency all legal moves single move known

Check Bjö. RPNI SC. Bjö. RPNI SC.

Björnsson 68.2 16.4 4.1 1598.6 454.1 82.4

Fractional0.5 51.8 9.4 2.2

Fractional0.6 50.8 9.3 2.1 5.4 4.4 0.2

Fractional0.7 50.8 9.2 2.0 5.6 3.3 0.2

Fractional0.8 49.4 9.5 1.8 5.7 3.0 0.2

Fractional0.9 42.8 10.4 1.5 5.7 2.6 0.2

Fast 4.0 4.6 0.4 4.6 5.3 0.4

the other tested algorithms. Experiments show that in practice

gathered observations data are incomplete, which justifies the

need for a learning function based on some approximation

method. For this reason, we have also proposed consistency

check functions, determining the acceptance of the proposed

DFA’s on the basis of the fraction of unsafe moves. These are

FractionalCheckα and FastCheck (which is a special case of

FractionalCheck with α = 1). As Tables I and II show, we

can select an α value giving us better results then Björnsson’s

consistency check, which has been our reference point.

Nevertheless, all the tested methods are efficient in com-

parison to game reasoners used in GGP. This supports the

thesis that the problem of General Game Playing should be

solved by detecting subclasses with more effective, domain-

based algorithms applicable [13]. As the boardgames are one

of the most common classes of games used in GGP, the effort

in this direction is relevant for the domain, and has possible

practical applications in the improvement of GGP systems [4].

ACKNOWLEDGMENTS

This work was supported in part by the

National Science Centre, Poland, under the project

numbers 2017/25/B/ST6/01920 (Jakub Kowalski) and

2015/17/B/ST6/01893 (Andrzej Kisielewicz).

REFERENCES

[1] M. Genesereth and M. Thielscher, General Game Playing. Morgan &
Claypool, 2014.

[2] M. Genesereth, N. Love, and B. Pell, “General Game Playing: Overview
of the AAAI Competition,” AI Magazine, vol. 26, pp. 62–72, 2005.

[3] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General Game Playing: Game Description Language Specification,”
Stanford Logic Group, Tech. Rep., 2006.

[4] Y. Björnsson, “Learning Rules of Simplified Boardgames by Observing,”
in ECAI, ser. FAIA, 2012, vol. 242, pp. 175–180.

[5] J. Kowalski and A. Kisielewicz, “Towards a Real-time Game Description
Language,” in ICAART, vol. 2, 2016, pp. 494–499.

[6] T. Schaul, “A video game description language for model-based or
interactive learning,” in IEEE CIG, 2013, pp. 1–8.

[7] M. Thielscher, “A General Game Description Language for Incomplete
Information Games,” in AAAI, 2010, pp. 994–999.

[8] D. Perez, S. Samothrakis, J. Togelius, T. Schaul, and S. M. Lucas,
“General Video Game AI: Competition, Challenges and Opportunities,”
in AAAI, 2016, pp. 4335–4337.

[9] M. Świechowski, H. Park, J. Mańdziuk, and K. Kim, “Recent Advances
in General Game Playing,” The Scientific World Journal, vol. 2015,
2015.

[10] B. Pell, “METAGAME in Symmetric Chess-Like Games,” in Heuristic

Programming in Artificial Intelligence: The Third Computer Olympiad.,
1992.

[11] J. Pitrat, “Realization of a general game-playing program,” in IFIP

Congress, 1968, pp. 1570–1574.
[12] C. de la Higuera, Grammatical Inference: Learning Automata and

Grammars. Cambridge University Press, 2010.
[13] J. Kowalski and A. Kisielewicz, “Testing General Game Players Against

a Simplified Boardgames Player Using Temporal-difference Learning,”
in IEEE Congress on Evolutionary Computation, 2015, pp. 1466–1473.

[14] J. Kowalski, J. Sutowicz, and M. Szykuła, “Simplified Boardgames,”
2016, arXiv:1606.02645 [cs.AI].

[15] P. Gregory, Y. Björnsson, and S. Schiffel, “The GRL System: Learning
Board Game Rules With Piece-Move Interactions,” in IJCAI Workshop

on General Intelligence in Game-Playing Agents, 2015, pp. 55–62.
[16] S. Cresswell and P. Gregory, “Generalised Domain Model Acquisition

from Action Traces,” in International Conference on Automated Plan-

ning and Scheduling, 2011, pp. 42–49.
[17] S. N. Cresswell, T. McCluskey, and M. M. West, “Acquisition of Object-

Centred Domain Models from Planning Examples,” in International

Conference on Automated Planning and Scheduling, 2009, pp. 338–341.
[18] S. Muggleton, A. Paes, V. Santos Costa, and G. Zaverucha, “Chess

Revision: Acquiring the Rules of Chess Variants through FOL Theory
Revision from Examples,” in Inductive Logic Programming, ser. LNCS,
vol. 5989, 2010, pp. 123–130.

[19] Ł. Kaiser, “Learning Games from Videos Guided by Descriptive Com-
plexity,” in AAAI, 2012, pp. 963–969.

[20] J. Kirk and J. E. Laird, “Interactive task learning for simple games,”
Advances in Cognitive Systems, vol. 3, pp. 11–28, 2014.

[21] E. M. Gold, “Complexity of automaton identification from given data,”
Information and Control, vol. 37, no. 3, pp. 302–320, 1978.

[22] L. Pitt and M. K. Warmuth, “The Minimum Consistent DFA Problem
Cannot Be Approximated Within Any Polynomial,” Journal of the

Association for Computing Machinery, vol. 40, no. 1, pp. 95–142, 1993.
[23] B. A. Trakhtenbrot and Y. M. Barzdin, Finite automata: Behavior and

Synthesis. American Elsevier Publishing Company, 1973.
[24] J. Oncina and P. Garcia, “Identifying Regular Languages In Polynomial

Time,” in Pattern Recognition and Image Analysis, 1992, pp. 49–61.
[25] K. Lang, “Random DFA’s can be Approximately Learned from Sparse

Uniform Examples,” in Proceedings of the Fifth Annual ACM Workshop

on Computational Learning Theory, 1992, pp. 45–52.
[26] P. Garcı́a, A. Cano, and J. Ruiz, “A Comparative Study of Two

Algorithms for Automata Identification,” in Grammatical Inference:

Algorithms and Applications, ser. LNCS, 2000, vol. 1891, pp. 115–126.
[27] P. Dupont, “Incremental regular inference,” in Grammatical Interfer-

ence: Learning Syntax from Sentences, ser. LNCS, 1996, vol. 1147, pp.
222–237.

[28] A. Cano, J. Ruiz, and P. Garcı́a, “Inferring Subclasses of Regular
Languages Faster Using RPNI and Forbidden Configurations,” in Gram-

matical Inference: Algorithms and Applications, ser. LNCS, 2002, vol.
2484, pp. 28–36.

[29] R. Parekh and V. Honavar, “Learning DFA from Simple Examples,”
Machine Learning, vol. 44, no. 1, pp. 9–35, 2001.

[30] Wikipedia. (2017, January) Fairy chess piece — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/wiki/Fairy chess piece.

[31] J. Kowalski, “General Game Description Languages,” Ph.D. dissertation,
University of Wrocław, 2016.

[32] (2016) The Chess Variant Pages. http://www.chessvariants.org/.
[33] J. Kowalski and M. Szykuła, “Procedural Content Generation for GDL

Descriptions of Simplified Boardgames,” 2015, arXiv:1108.1494 [cs.AI].
[34] ——, “Evolving Chesslike Games Using Relative Algorithm Perfor-

mance Profiles,” in Applications of Evolutionary Computation, ser.
LNCS, 2016, vol. 9597, pp. 574–589.

