
Embedding a Card Game Language into a
General Game Playing Language

Jakub KOWALSKI a,
a Institute of Computer Science, University of Wrocław, Poland

Abstract. We make a link between a specialized context free language express-
ing the rules of variety of card games, called CGDL, and the most known general-
purpose game description language GDL-II. We present a systematic translation
from CGDL to GDL-II, prove that the translation is correct, and analyze the com-
plexity of resulting code in both theoretical and empirical way.

Keywords. General Game Playing, knowledge representation, Game Description
Language, Card Game Description Language

1. Introduction

Artificial intelligence was always using games as test problems and demonstration of its
advancement. Defeating human supremacy in popular games such as chess (Deep Blue),
checkers (Chinook) or Jeopardy (Watson) were great achievements of AI. However, to
meet the basic purpose of AI – solving general problems, a different approach should be
taken. Instead of improving specialized programs which are able to play only one game,
the general approach to game playing consists of developing programs which can play
every game from some wide game class defined by a formal description language.

The most popular approaches in this field are related to General Game Playing
(GGP) competition [5] and a special first order logic language based on KIF called Game
Description Language (GDL) [10]. It has enough power do describe all turn-based, fi-
nite and deterministic n-player games with full information. Playing a game given by
such a description requires not only developing a move choosing algorithm, but also im-
plementing a reasoning approach to understand the game rules in the sense of comput-
ing legal moves, computing the state update function, and computing the goal function.
Many approaches were created in this field including implementations of game playing
mechanisms [2,6,7] and improving effectiveness of reasoning engines [1,8,9]. Recently,
an extension of GDL called GDL-II (from GDL with Incomplete-Information) was pro-
posed [15]. This language removes some restrictions of GDL and allows to describe also
nondeterministic games with hidden information, but requires developing new playing
techniques [13].

A card game description language developed recently in [3,4], which we call for
brevity CGDL, has a unique feature – it allows one to use genetic programming to evolve
game rules and so, to create new games. CGDL is a high level language with a lot of
domain specific commands, to describe n-player, standard deck card games with possi-
bility of bets (like in poker). In this paper we define a direct translation from CGDL lan-



guage into GDL-II. Then, we compare both languages as representatives of two different
approaches to game description: very general one, but with difficult semantic influencing
efficiency of playing algorithms, and narrow one with compact and flexible description.
As GDL-II was compared with other game classes to ensure it has enough expressive
power [11,12,16], no translation between other game description languages focused on
practical gaming aspects is presented. We implement our translation and compare the
complexity of CGDL and GDL-II both theoretically and empirically. We also distinguish
features, which can possibly be transferred from CGDL into GDL/GDL-II to improve
this, currently the most widely used, general game description language.

2. Preliminaries

2.1. GDL-II

GDL-II [15] is, as its predecessor GDL, strictly declarative language using logic
programming-like syntax very similar to Prolog. It can describe any finite, synchronous,
turn-based, n-player game. Every game description contains the declaration of players
roles, the initial game state, the legal moves, the state transition function with players’
percepts, the terminating conditions, and the declaration of goal function.

Language does not provide any predefined functions including arithmetic expres-
sions or game-domain specific structures such as a board or a card deck. Every function
and declaration must be defined explicitly from scratch, and the only keywords used to
define game are (symbols beginning with ? are variables):

(role ?r) ?r is a player
random random player (Nature, casino, . . . )

(init ?f) fact ?f is true in the initial state
(true ?f) fact ?f is true in the current state

(legal ?r ?a) in the current state ?r can perform action ?a

(does ?r ?a) ?r performed action ?a in the previous state
(next ?f) ?f will be true in the next state

(sees ?r ?p) player ?r will perceive ?p in the next state
terminal current state is terminal

(goal ?r ?n) player ?r score is ?n

To be considered as valid, a GDL-II game specification must be stratified and al-
lowed. This, and other syntactic restrictions ensures that the game have a unique standard
model with only a finite number of true positive instances, so all deductions in Definition
1 are finite and decidable. For details we must refer to [10].

Let G be a valid GDL-II game description. It contains a finite number of function
symbols and constants, which determines the set of possible ground terms Σ. Although
Σ can be infinite, syntactic restrictions ensure that all sets needed to compute game
flow (roles, legal moves, reachable states, etc.) are finite subsets of Σ [10]. Let S =
{f1, . . . , fk} be a state of the game, denoted as the set of predicates which are true in the
current position. Then we define a base state as Strue def

= {(true f1), . . . , (true fk)}.
Let us also denote the joint moveAdoes def

= {(does r1 a1), . . . , (does rn an)} if play-
ers r1, . . . , rn took actions a1, . . . , an. We can now introduce



Definition 1 [15] The semantics of a valid GDL-II n player game specification G with
a set of ground terms Σ is given by a state transition system composed as follows.

• R = {r ∈ Σ : G |= (role r)} (player names);
• s0 = {f ∈ Σ : G |= (init f)} (initial state);
• t = {S ∈ 2Σ : G ∪ Strue |= terminal} (terminal states);
• l = {(r, a, S) : G ∪ Strue |= (legal r a)}, for all r ∈ R, a ∈ Σ and S ∈ 2Σ;
• u(A,S) = {f : G∪Adoes ∪Strue |= (next f)}, for all joint moves A : (R 7→

Σ) and states S ∈ 2Σ (state update);
• I = {(r,A, S, p) : G∪Adoes∪Strue |= (sees r p)}, for all r ∈ R\{random},
A : (R 7→ Σ), S ∈ 2Σ and p ∈ Σ (players’ percepts);

• g = {(r, n, S) : G ∪ Strue |= (goal r n)}, r ∈ R, n ∈ {0, . . . , 100}, S ∈ 2Σ.

The execution model works as follows. Starting from the initial state s0, in every state S
every player r ∈ R selects one legal action a such that (r, a, S) ∈ l. The random player
choose his moves randomly with uniform probability. The joint move is applied to the
state update function u(A,S) to obtain a new state S′. In S′, every role r ∈ R\{random}
perceives every p that satisfies (r,A, S, p) ∈ I. If the current state is terminal, i.e. S ∈ t,
then every player obtains a score by relation (r, n, S) ∈ g and the game ends.

The partial GDL-II game description is set as an example in Listing 2. For a more
detailed language specification and full games examples we refer to [15,16].

2.2. CGDL

CGDL introduced in [4] is a context free language designed to define a rich subset of
possible card games and allow to perform genetic operations to create new or evolve ex-
isting games [3]. The language domain is narrowed to n player, standard deck card games
with a possibility of coin bets. All language constructions are strictly domain-dependent
and use concepts of a card, number, suit, token, etc. These concepts, same as arithmetic
and boolean operators, are defined a priori and used without explicit declaration.

A valid CGDL game is defined as follows. P is the number of players. Every player
i has his private hand location (named Hi) and two areas for placing coins: private Ki0
with player’s coins, and public Ki1 for placing bets. T is the number of virtual table
locations, where cards can be placed face up. The set of game rules is organized into
sequentially ordered stages, containing rules. Every stage is played in a round-robin order
until all players are out of the game or decide to end the current stage (status set to done).

Every rule has a form of modifier if condition then action. The current player can
perform any action from the set of current stage rules only if the rule condition is satisfied
and the modifier limitations are met. Possible rule modifiers are: computer – must be
played by the computer at the beginning of a stage, mandatory – must be played by a
player at the beginning of a stage (after computer rules applied), once – can be applied
only once, optional – no restrictions. A partial list of possible conditions contains

• λ – no condition to satisfy, always true;
• sum,LA,R,LB – sums values of cards in both locations LA and LB, evaluates to

true if the restriction R ∈ {<,>,=,≤,≥, λ} is satisfied;
• tokens,KA,R,KB – compares number of tokens in KA and KB using R;
• have,C – check if the player’s hand contains given card combination C, e.g. the

king of hearts, three diamonds and one heart, etc.



Set of available actions is a superset of
• pifr,LA,A,F – draw a given amount A of cards from a location LA to player’s

hand, cards are openly visible if face F is up;
• bet,R,KA – bet an amount of tokens which, when compared to the number of

tokens in the location KA, satisfies the restriction R;
• done / out – the player status is set to done/out;
• win – the player instantly wins the game;
• give,P,A – computer only, give A tokens to the set of players P ;
• deal,P,A – computer, deal A cards from the deck to players P .

Additional special abbreviations are: HA – hands of all players, KA bets of all players,
HX the hand of the current player, KX bets of the current player, <allplayers> rule is
multiplied for all players. Rules can also define a value mapping for every card and some
combination of cards (called plays). Game is over when all players are out, some player
performs win action or the last stage is over. Player’s score is calculated by points for ev-
ery possessed token (t), card (c) and ”not out” bonus (s). If player ends by choosing win

action he got 100 and other 0. As an example, rules in Listing 1 describe a codification
of game Blackjack. For more detailed language specification we must refer to [3,4].

3. Translation

In this section we present details of our translation. We constructed the function F which
takes a CGDL game description G and returns the same game encoded in GDL-II. As
the CGDL language is created by a context-free grammar, the construction is grammar
based. For every game description subtree, we compute all GDL rules necessary to en-
code that subtree. Afterwards we remove duplicate definitions of the predicates.

The specification of the translation is provided in as much detail as we can in such
limited space. As an example we translate CGDL codification of the game Blackjack
from Listing 1 to equivalent GDL-II rules partially presented in Listing 2. References to
line numbers (if not stated otherwise) refers to Listing 2.

Listing 1: CGDL codification of the game Blackjack.

1 [SETTINGS] P=3, T=0
2 [STAGES]
3 Stage 0
4 COMPUTER deal, <allplayers>, 2
5 COMPUTER give, <allplayers>, 99
6 Stage 1
7 MANDATORY if λ then bet, λ , λ
8 Stage 2
9 OPTIONAL if λ then pifr, D, 1, up

10 OPTIONAL if λ then done
11 Stage 3
12 MANDATORY if sum, HX, >, 21 then out
13 MANDATORY if sum, HX, <=, 21 then done
14 Stage 4
15 MANDATORY if sum, HX, >, HA then gain, KA
16 [RANKING] 2:2, ..., King:10, Ace:11, Ace:1
17 [POINTS] t=1, c=0, s=0



Listing 2: Partial GDL-II code of the translated CGDL game Blackjack (in infix notation).

1(role random) (role player1) . . . (role player3). . .
26(init (Stage ShuffleDeck COMPUTER))
27(init (Shuffled Top))
28((init (UnShuffled ?c)) ⇐ (card ?c ?num ?suit))
29(init (ActionAvailable 0 s0a0 random COMPUTER)). . .. . .

161((next (Token ?l2 ?n3))
162 ⇐ (true (Token ?l2 ?n1)) ∧ (movecoin ?n2 ?l1 ?l2) ∧ (asum ?n1 ?n2 ?n3))
163((next (Token ?l1 ?n3))
164 ⇐ (true (Token ?l1 ?n1)) ∧ (movecoin ?n2 ?l1 ?l2) (asub ?n1 ?n2 ?n3))
165((next (ActionAvailable ?stage ?id1 ?p ?type))
166 ⇐ (true (ActionAvailable ?stage ?id1 ?p ?type))
167 ∧ (does ?player (action ?id2 ?vis ?cond ?act)) ∧ (distinct ?id1 ?id2)). . .
314((legal ?player ?act) ⇐ (tmplegal ?player ?act))
315((tmplegal ?player (action s4a0 visible (sum HX gt HA) (gain KA)))
316 ⇐ (true (Stage 4 MANDATORY)) ∧ (true (CurrentPlayer ?player))
317 ∧ (true (ActionAvailable 4 s4a0 ?player MANDATORY))
318 ∧ (not (true (PlayerStatus ?player aDONE)))
319 ∧ (not (true (PlayerStatus ?player aOUT)))
320 ∧ (handlocation ?player ?hand) ∧ (rsum ?hand ?n) ∧ (handlocation ?p1 ?h1)
321 ∧ (rsum ?h1 ?n1) ∧ (handlocation ?p2 ?h2) ∧ (rsum ?h2 ?n2)
322 ∧ (distinct ?p1 ?player) ∧ (distinct ?p2 ?player) ∧ (distinct ?p2 ?p1)
323 ∧ (or (bgt ?n ?n1) (true (PlayerStatus ?p1 aOUT)))
324 ∧ (or (bgt ?n ?n2) (true (PlayerStatus ?p2 aOUT)))). . .
432((movecoin ?n ?bloc1 ?hloc) ⇐ (betlocation ?player ?hloc ?bloc)
433 ∧ (does ?player (action ?id ?vi ?cond (gain KA)))
434 ∧ (betlocation ?p ?hloc1 ?bloc1) (rKA ?n)). . .
471((sees ?player (deltacoins ?n ?loc1 ?loc2)) ⇐ (movecoin ?n ?loc1 ?loc2))
472 ∧ (does ?p (action ?id visible ?cond ?action)). . .
487(terminal ⇐ endstage ∧ (true (Stage ?n ?t))
488 ∧ (_stagesorder (Stage ?n ?t) ∧ (Stage EndGame none)))
489((goal ?player 100) ⇐ (true (Won ?player)))
490((goal ?player 0) ⇐ (true (Won ?p))∧(role ?player)∧(not(true (Won ?player)))). . .
557((rKA ?s3) ⇐ (true (Token K11 ?n1)) ∧ (true (Token K21 ?n2))
558 ∧ (true (Token K31 ?n3)) ∧(asum ?n1 ?n2 ?s2) ∧ (asum ?s2 ?n3 ?s3))
559((rsum ?loc ?s12) ⇐ (location ?loc) ∧ (numberofcards ?loc 2)
560 ∧ (hold2cards ?loc ?c1 ?c2) ∧ (card ?c1 ?num1 ?suit1)
561 ∧ (value ?num1 ?val1) ∧ (card ?c2 ?num2 ?suit2)
562 ∧ (value ?num2 ?val2) ∧ (asum 0 ?val1 ?s1) ∧ (asum ?s1 ?val2 ?s12)). . .
694(location D) . . . (location H3)
695(handlocation player1 H1) . . . (handlocation player3 H3)
696(betlocation player1 K10 K11) . . . (betlocation player3 K30 K31)
697(card 2OfHearts 2 Hearts) . . . (card AceOfSpades Ace Spades)
698(value 2 2) . . . (value Ace 11) (value Ace 1)
699(stagesorder (Stage ShuffleDeck COMPUTER) (Stage 0 COMPUTER)) . . .
700 (stagesorder (Stage 4 MANDATORY) (Stage EndGame none)). . .
819(aplus1 0 1) . . . (aplus1 100 101)
820((asum ?n 0 ?n) ⇐ (aplus1 ?n ?m))
821((asum ?n1 ?n3 ?n5) ⇐ (aplus1 ?n2 ?n3)
822 ∧ (aplus1 ?n4 ?n5) ∧ (asum ?n1 ?n2 ?n4))
823((bleq ?n ?n) ⇐ (aplus1 ?n ?m))
824((bleq ?n1 ?n3) ⇐ (aplus1 ?n1 ?n2) ∧ (bleq ?n2 ?n3))



Constants define relations which hold throughout the entire game (line 1 and 694).
Predicate role ?role declares set of players player1, . . . playerP , random; location
?loc defines set of possible card locations: D for the deck, H1, . . . , HP for players’ hands
and T0, . . . , T(T−1) for table locations; handlocation ?player ?hand maps playeri to
his hand location Hi. Predicate tokenlocation ?loc defines all token locations K10, . . . ,
KP0, K11, . . . , KP1 and betlocation ?player ?privloc ?betloc maps these locations
from player playeri to private token location Ki0 and bet location Ki1. List of all cards
is stored in card ?card ?number ?suit. The card value mapping is stored in predicate
value ?card ?n. Round-robin ordering of P players is simply defined as playersorder
?prev ?next relation. Predicate stagesorder ?prev ?next is constructed based on or-
dering detected in CGDL game codification.

Definition 2 The game state is the minimal set of data necessary to distinguish that two
game positions are different. CGDL game state consists of: the contents of the deck and
all table and token locations; the number of current stage and player; the status of every
player and the information about available computer/mandatory/once actions.

A game state is covered by a constant number of GDL-II predicates forming Strue sets
and storing information necessary to encode the CGDL state according to Definition 2.

• Stage ?id ?type – identifier of the current stage and a type of the sub-stage
containing information about the allowed actions type (computer, mandatory, op-
tional); one such predicate is true at the time;

• ActionAvailable ?stagenumber ?actionID ?player ?type – stores all ac-
tions which can be performed by the players, if a non-optional action was made
it is removed from this set and cannot be used again;

• Token ?location ?amount – for every tokenlocation stores the number of to-
kens in this location;

• Table ?location ?card – for every tablelocation except the deck stores the
cards in this location;

• Deck ?nextcard ?prevcard – contains cards in the deck arranged in an order
(special constant Top marks top of the deck);

• CurrentPlayer ?player – identifies the current player if it is not the dealer’s
turn, maximum one such predicate is true at the time;

• PlayerStatus ?player ?status – for every player remembers his status if nec-
essary; status can be aDONE if the player decided to end the current stage, aOUT if
he is out of the game or mDONE if he has no mandatory moves but is not done;

• Won ?player – true if some player performed the win action;
• UnShuffled ?card – a special predicate used at the beginning of the game to

remember cards which are not yet shuffled into the deck;
• Shuffled ?card – a special game-beginning predicate to remember the last card

chosen by the dealer to be placed at the bottom of the deck.

Definition 3 A state is called technical in one of the following cases: the predicate Stage
ShuffleDeck COMPUTER is true – which means that the virtual dealer prepares random
ordering of cards in the deck; or the CurrentPlayer status is ”out”, ”done” or he has
no actions with fulfilled conditions but it is his turn in round-robin ordering – then every
player makes the NOOP move and the CurrentPlayer shifts to the next player in order
(which may lead to a next technical state).



The initialF(G) game state s0 (line 26) is technical, because of necessity to random-
ize the card deck. Every game begins with (Stage ShuffleDeck COMPUTER) ∈ Strue
and all cards identifiers marked as UnShuffled. For the next 52 turns the random player
choose every still UnShuffled card with the uniform probability and put on the bottom
of the actual deck. After this, Stage changes to the first stage from the original G game.
Also possible players’ actions are put into the AvailableAction predicate.

Managing legal actions can be divided into several cases. When CurrentPlayer is
set and there is some non-COMPUTER Stage, the player can choose legal action from ex-
isting tmplegal ?player (action ?id ?visibility ?condition ?action) relations.
Such relation corresponds to exactly one rule from G. Variables ?condition and ?action

matches CGDL rule condition and action; ?id is an artificial identifier matching the id
from AvailableActions relation, and ?visibility serves to determine I function.

In our example, the rule from CGDL codification line 15 is translated into the
tmplegal rule in GDL-II code line 315. Initial queries are checking stage, action avail-
ability and player’s status. Then queries matching condition are set. In our example these
are restricting sum of values of player’s cards against the values of all other players cards.

Another case occurs when no tmplegal relation is true, due to not fulfilled condi-
tions or exhaustion of AvailableActions. Then player can make only special NOOP move
which does not change the game state. This move is also used in the following cases: for
player which as not marked as CurrentPlayers; for player who is marked as current but
he is actually done or out and for all players when there is a COMPUTER type stage.

For managing changes in cards and tokens possession two special predicates were
introduced: movecard and movecoin. They are filling the gap between performed actions
Adoes and state update function u. As the main idea between both predicates is similar
we present here only a movecoin example (line 432). If relation movecoin ?n ?from

?to holds, this means that ?n coins are added to ?to coin location and subtracted from
?from location. Multiple such relations can hold at the same time, but then their ?n and
?to arguments are the same. CGDL limitations implies that moving coins from multiple
locations forces them to be empty, so in such cases ?n is always set to sum of tokens in
all ?from locations. It is safe due to natural number arithmetic (subtracting from 0 is 0).

Updating the current state given players’ moves, i.e. defining u function is the most
complex part of the translation which, due to the limited space, we cannot describe in
details (partial next code is shown in line 161). Every base predicate has its own set
of updating rules, mostly using additional helper predicates. Sketch of the mechanics
looks as follows. End of a stage occurs when all players have adequate statuses (aOUT,
aDONE or mDONE), there is no player with any ActionAvailable left for the stage, or this
is last turn of ShuffleDeck stage. If endstage holds, stage changes to the next stage in
stagesorder. Similarly CurrentPlayer changes when endplayer holds. This depends
on the player’s actions performed, status and availability of the current stage actions.

Content of Table, Deck and Token is updated based on movecard and movecoin se-
mantics. This requires several cases to examine, especially concerning taking cards from
the deck without destroying its structure. If in the last turn, the player performed non-
OPTIONAL action with some identifier, it is removed from the ActionAvailable set. Up-
dating Shuffled and UnShuffled predicates takes place during the ShuffleDeck stage.
If does random (?shuffle ?card) holds, then ?card is subtracted from UnShuffled set
and remembered as last Shuffled card. The predicate Won becomes true when the win

action was performed.



Simulating CGDL requires natural number arithmetic for the numbers not greater
then 100 (upper bound for a goal value). If some card value or play value extends that
number, we can use the optional translation parameter to increase this maximum. Ev-
ery created GDL-II description contains the following arithmetic and boolean functions:
aplus1, asum, asub, amult, blt, bgt, bleq, bgeq, beq, bneq (line 819).

Rules defining tmplegal contain queries to helper predicates encoding CGDL re-
strictions and conditions. For example rKA ?n holds if ?n is the cumulative bet of all play-
ers (line 557) and rsum ?loc ?n holds if values of cards in ?loc sum up to ?n. The func-
tion rsum is particularly complex and requires other helper predicates: numberofcards
?loc ?n which holds if in ?loc there exactly ?n cards, holdcards arity ?loc ?n sat-
isfied when ?loc contains at least ?n cards, and the predicate family holdncards ?loc

?card1 ... ?cardn which hold if there are n different cards in ?loc. The complexity
of the solution rises from a need of reasoning about the number of satisfied predicates.
Example of rsum rule for n = 2 is shown in line 559.

The predicate sees ?player ?percept defines I relation, i.e. predicates percepti-
ble by given player. Every player has a full knowledge about his hand, his private coin
location, the current stage, current player and all players’ statuses. Table locations, bet
locations and last performed action identifier are visible to all players. Details of the ac-
tion (e.g. what cards player took from the deck) are perceived only by the player who
made the action or by everyone if action visibility is set to visible (line 471).

Definition of the terminal relation depends on several rules checking if: all players
are out, some player made win action or Stage EndGame none is reached (line 487).
Computing the g function is divided into two cases. If player won using the win action,
he got 100 and all other players (including random) got 0. Otherwise the player’s score is
computed according to the CGDL game specification using t, c, s values.

4. Translation Properties

We state the main properties of the translation, concerning its correctness and complexity.

Definition 4 Let S be a state of CGDL game G. Then a state S′ of game F(G) is called
corresponding, i.e. S .

= S′ if: both states have the same content and ordering of deck
and every hand location, table location and token location; the actual number and type
of stage; the current player; player’s statuses and the set of available actions.

Theorem 1 For every CGDL game G presented translation F satisfies the following.

1. The game F(G) meet all syntactic requirements of valid GDL-II description.
2. The irst non-technical state of F(G) is corresponding to the first state of G as-

suming identical deck ordering.
3. For every non-technical game states S .

= S′ there is an isomorphism between
joint legal actions from both states.

4. For every non-technical game states S .
= S′ and joint actions A .

= A′, for all se-
quences of joint moves 〈A′, A′

2, . . . , A
′
k〉 such that Si = u(A′

i, . . . u(A′, S′) . . .)
and Sk is non-technical but for all i < k, Si is technical, Sk is corresponding to
state S after applying actions A. Such sequence always exists.

5. If S .
= S′, S is terminal iff. S′ ∈ t, goal values match for corresponding players.



Table 1. Results of example games transformation. Visualize dependence between complexity of CGDL de-
scription (number of players, table locations, stages and rules) and resulting GDL-II code. As measurement
we took number of rules and predicates used to express the game. The number of predicates and rules for base
predicates are shown separately.

Game
CGDL code GDL-II code

predicates rules
P T stages rules base all base all

Uno 2 1 2 7 10 61 38 245
Uno 3 1 2 8 10 61 39 254
Uno 3 2 2 8 10 61 39 256
Blackjack 3 0 5 12 10 63 43 361
Blackjack 3 1 5 12 10 63 43 363
Poker 3 2 13 30 10 68 61 426
Poker 4 2 13 32 10 68 63 437

Proofs of theorems are omitted due to space reasons.
We implemented a program which applies the translation function for given CGDL game
description. To measure practical complexity of resulting code we provided a series of
experiments using Poker, Blackjack and Uno games from [4] (with slightly different
changes).The result of the experiments are shown in Table 1. Sizes of translated games
gives a picture of complexity of their rules, which affects speed of computing GDL game
states. The data also show that a number of predicates is independent on the number
of players and table locations, a number of base predicates rules depends linear on the
number of players and both these values have influence on overall number of rules. We
state that theoretical complexity of a translated game is described by

Theorem 2 Let G be a P player CGDL game description of the length N (where length
is the sum of the number of stages, rules, and card/plays value mapping entries) with T
table locations. Then the number of rules in the GDL-II game F(G) is O(P + T + N)
and the number of predicates can be bounded by a constant.

5. Summary

The quality of solutions for General Game Playing problems heavily depends on a lan-
guage which describes a game. Although the target should be to describe as many games
as possible, very general languages causes two major problems. First is that providing
a good playing algorithm is much harder if the type of a game is unknown. Second,
that understanding and maintaining the game description is also far more complicated.
Other extreme case is a language which can describe only certain types of strictly de-
clared games, but it is high level and uses domain-dependent constructions. In this case
maintaining a game description and implementing better playing algorithms is simpler.

In this paper we studied the relation between both of these approaches. On the one
hand we took the most popular and the most general first order logic GDL-II language,
which can describe any finite, turn-based, n-player game. On the other hand we took
recently developed Card Game Description Language which is a high level language to
describe card games with bets and allows a genetic manipulation on the game structure.



We constructed a translation from CGDL language into GDL-II, described details
of this translation, proved its correctness and checked its complexity both theoretically
and empirically. Although the size of translated game description is linear (in the sense
of game rules), a complexity of simulating the game basing on pure GDL engine without
compilation [9] or calling external code [14] can be computationally too hard to be per-
formed in reasonable time, due to complicated form of queries. Our translation can be
used as a benchmark tool for improving GDL players by comparison with CGDL playing
algorithms. If some successful solutions could be transferred to more general approach
it would be a step to reduce the gap between GDL-based and game-specific reasoners.

An interesting feature is a possibility of performing genetic operations on CGDL
game code. Although CGDL was designed specifically for this case, we think it is also
possible to develop this feature to GDL. GDL is a complicated language in terms of
validity and semantics, but syntax rules are simple enough to make it feasible. In fact,
artificially evolved GDL games could have interesting influence on creating GGP agents.
They should from now on be able to play really any game, even codified in strange style
and without common sense, not only well behaved adaptations of human games.

References

[1] Y. Björnsson and S. Schiffel. Comparison of GDL Reasoners. In Proceedings of the IJCAI-13 Workshop
on General Game Playing (GIGA’13), 2013.

[2] H. Finnsson and Y. Bjornsson. Simulation-based Approach to General Game Playing. In AAAI. AAAI
Press, 2008.

[3] J. Font, T. Mahlmann, D. Manrique, and J. Togelius. Towards the automatic generation of card games
through grammar-guided genetic programming. In International Conference on the Foundations of
Digital Games (FDG 2013), pages 360–363, 2013.

[4] J. M. Font, T. Mahlmann, D. Manrique, and J. Togelius. A Card Game Description Language. In
Applications of Evolutionary Computation, volume 7835 of LNCS, pages 254–263. Springer, 2013.

[5] M. Genesereth, N. Love, and B. Pell. General game playing: Overview of the AAAI competition. AI
Magazine, 26:62–72, 2005.

[6] S. Haufe, D. Michulke, S. Schiffel, and M. Thielscher. Knowledge-Based General Game Playing. KI,
25(1):25–33, 2011.

[7] P. Kissmann and S. Edelkamp. Symbolic Classification of General Multi-Player Games. In European
Conference on Artificial Intelligence (ECAI), volume 178 of FAIA, pages 905–906. IOS Press, 2008.

[8] P. Kissmann and S. Edelkamp. Instantiating General Games Using Prolog or Dependency Graphs. In
KI 2010: Advances in Artificial Intelligence, volume 6359 of LNCS, pages 255–262. Springer, 2010.

[9] J. Kowalski and M. Szykuła. Game Description Language Compiler Construction. In AI 2013: Advances
in Artificial Intelligence, volume 8272 of LNCS, pages 234–245. Springer, 2013.

[10] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. General Game Playing: Game De-
scription Language Specification. Technical report, Stanford Logic Group, 2008.

[11] J. Ruan and M. Thielscher. On the Comparative Expressiveness of Epistemic Models and GDL-II. In
Proceedings of the IJCAI-11 Workshop on General Game Playing (GIGA’11), 2011.

[12] S. Schiffel and M. Thielscher. Representing and Reasoning About the Rules of General Games With
Imperfect Information. Journal of Artificial Intelligence Research, 49:171–206, 2014.

[13] M. Schofield, T. Cerexhe, and M. Thielscher. HyperPlay: A Solution to General Game Playing with
Imperfect Information. In AAAI Conference on Artificial Intelligence. AAAI Press, 2012.

[14] X. Sheng and D. Thuente. Extending the General Game Playing Framework to Other Languages. In
Proceedings of the IJCAI-11 Workshop on General Game Playing (GIGA’11), 2011.

[15] M. Thielscher. A General Game Description Language for Incomplete Information Games. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, pages 994–999. AAAI Press, 2010.

[16] M. Thielscher. The General Game Playing Description Language is Universal. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages 1107–1112. AAAI Press, 2011.


