
Developing a Successful Bomberman Agent

Dominik Kowalczyk, Jakub Kowalski, Hubert Obrzut, Michał Maras, Szymon Kosakowski,
Radosław Miernik

5 February 2021



Motivation

Bomberman (Hudson Soft, 1983) is a
popular, arcade-style game.



Test bed

Hypersonic is an adaptation of Bomberman as a
programming game available on CodinGame1.

During the competition held in September 2016,
it attracted over 2700 participants. When it con-
cluded, it became one of the multiplayer games
available on the platform. At the moment there
are more than 2300 agents in the public arena.

1https://www.codingame.com/multiplayer/bot-programming/hypersonic

https://www.codingame.com/multiplayer/bot-programming/hypersonic


Test bed

Hypersonic is an adaptation of Bomberman as a
programming game available on CodinGame1.

During the competition held in September 2016,
it attracted over 2700 participants. When it con-
cluded, it became one of the multiplayer games
available on the platform. At the moment there
are more than 2300 agents in the public arena.

1https://www.codingame.com/multiplayer/bot-programming/hypersonic

https://www.codingame.com/multiplayer/bot-programming/hypersonic


Test bed

The game is played by 2 to 4 players on a 13x11 grid. Grid cells may be floors
(passable), walls, or boxes (impassable). Walls’ positions are always the same
(every odd cell in both directions). Only boxes can be destroyed (with bombs).

Players start in corners. Each turn a player may place a bomb (up to a limit) and
move to the nearest cell (if it is free), thus there are at most 10 actions. Multiple
players can occupy the same cell.

Bombs explode after 8 turns, creating a blast in both cardinal directions up to
range cells. If it reaches another bomb, it causes a chain reaction.

Initially players may place one bomb with a range of 3. Boxes may drop items that
increase one statistic when picked up. (Box contents are visible to all players.)



Test bed

The game is played by 2 to 4 players on a 13x11 grid. Grid cells may be floors
(passable), walls, or boxes (impassable). Walls’ positions are always the same
(every odd cell in both directions). Only boxes can be destroyed (with bombs).

Players start in corners. Each turn a player may place a bomb (up to a limit) and
move to the nearest cell (if it is free), thus there are at most 10 actions. Multiple
players can occupy the same cell.

Bombs explode after 8 turns, creating a blast in both cardinal directions up to
range cells. If it reaches another bomb, it causes a chain reaction.

Initially players may place one bomb with a range of 3. Boxes may drop items that
increase one statistic when picked up. (Box contents are visible to all players.)



Test bed

The game is played by 2 to 4 players on a 13x11 grid. Grid cells may be floors
(passable), walls, or boxes (impassable). Walls’ positions are always the same
(every odd cell in both directions). Only boxes can be destroyed (with bombs).

Players start in corners. Each turn a player may place a bomb (up to a limit) and
move to the nearest cell (if it is free), thus there are at most 10 actions. Multiple
players can occupy the same cell.

Bombs explode after 8 turns, creating a blast in both cardinal directions up to
range cells. If it reaches another bomb, it causes a chain reaction.

Initially players may place one bomb with a range of 3. Boxes may drop items that
increase one statistic when picked up. (Box contents are visible to all players.)



Test bed

The game is played by 2 to 4 players on a 13x11 grid. Grid cells may be floors
(passable), walls, or boxes (impassable). Walls’ positions are always the same
(every odd cell in both directions). Only boxes can be destroyed (with bombs).

Players start in corners. Each turn a player may place a bomb (up to a limit) and
move to the nearest cell (if it is free), thus there are at most 10 actions. Multiple
players can occupy the same cell.

Bombs explode after 8 turns, creating a blast in both cardinal directions up to
range cells. If it reaches another bomb, it causes a chain reaction.

Initially players may place one bomb with a range of 3. Boxes may drop items that
increase one statistic when picked up. (Box contents are visible to all players.)



Test bed

The game ends when there is at most one player is left or 20 turns after all boxes
are destroyed (with a hard limit of 200 turns). Players are ranked by the order of
elimination (last one standing wins). Ties are resolved by the number of destroyed
boxes.

Top-tier agents usually end the game after 90-120 turns for two and 70-100 turns
for four players.

Time limits are 1000ms for the first and 100ms for each of the following turns.
The communication is based on standard input/output streams.



Test bed

The game ends when there is at most one player is left or 20 turns after all boxes
are destroyed (with a hard limit of 200 turns). Players are ranked by the order of
elimination (last one standing wins). Ties are resolved by the number of destroyed
boxes.

Top-tier agents usually end the game after 90-120 turns for two and 70-100 turns
for four players.

Time limits are 1000ms for the first and 100ms for each of the following turns.
The communication is based on standard input/output streams.



Test bed

The game ends when there is at most one player is left or 20 turns after all boxes
are destroyed (with a hard limit of 200 turns). Players are ranked by the order of
elimination (last one standing wins). Ties are resolved by the number of destroyed
boxes.

Top-tier agents usually end the game after 90-120 turns for two and 70-100 turns
for four players.

Time limits are 1000ms for the first and 100ms for each of the following turns.
The communication is based on standard input/output streams.



Engine

As usual, the engine is supposed to do two things: compute legal actions of a given
state and apply them later. We have implemented two versions of it – one that
is very straightforward and the other that heavily relies on preprocessing, bitwise
operations, and other low-level programming techniques. For example, it calculates
the bomb’s blast radius in constant time.

Number of actions performed by a random agent in 500ms, starting from example
midgame situation with 2, 3, and 4 players, resetting every 15 actions or death.

Number of players 2 3 4
Naive engine 90k 79k 80k

Bitwise engine 1.45m 1.3m 1.28m



Engine

As usual, the engine is supposed to do two things: compute legal actions of a given
state and apply them later. We have implemented two versions of it – one that
is very straightforward and the other that heavily relies on preprocessing, bitwise
operations, and other low-level programming techniques. For example, it calculates
the bomb’s blast radius in constant time.

Number of actions performed by a random agent in 500ms, starting from example
midgame situation with 2, 3, and 4 players, resetting every 15 actions or death.

Number of players 2 3 4
Naive engine 90k 79k 80k

Bitwise engine 1.45m 1.3m 1.28m



Algorithms

We have implemented three different playing algorithms: MCTS, RHEA, and Beam
Search.

All three algorithms try to predict opponents’ behavior by applying a similar strat-
egy. They spend some time performing search as each of the opponents with an
assumption that all other players do nothing.

Due to the quality of the search, both MCTS and RHEA spend 10ms on each
opponent, while 5ms turned out to be enough for Beam Search.



Algorithms

We have implemented three different playing algorithms: MCTS, RHEA, and Beam
Search.

All three algorithms try to predict opponents’ behavior by applying a similar strat-
egy. They spend some time performing search as each of the opponents with an
assumption that all other players do nothing.

Due to the quality of the search, both MCTS and RHEA spend 10ms on each
opponent, while 5ms turned out to be enough for Beam Search.



Algorithms

We have implemented three different playing algorithms: MCTS, RHEA, and Beam
Search.

All three algorithms try to predict opponents’ behavior by applying a similar strat-
egy. They spend some time performing search as each of the opponents with an
assumption that all other players do nothing.

Due to the quality of the search, both MCTS and RHEA spend 10ms on each
opponent, while 5ms turned out to be enough for Beam Search.



Algorithms – MCTS

There are multiple variants of MCTS for multiplayer games. We have decided to
use Single Player MCTS and rely on the opponents’ predictions.

Additionally, we prune the actions of the initial state, by doing a two turns deep
exhaustive search of actions eliminating the player.

Within the time limit, agent reached depth of 12 for own actions and 9 for the
opponents. Every playout was limited by a given depth (15), and if the game was
not finished, a heuristic function was used instead.



Algorithms – MCTS

There are multiple variants of MCTS for multiplayer games. We have decided to
use Single Player MCTS and rely on the opponents’ predictions.

Additionally, we prune the actions of the initial state, by doing a two turns deep
exhaustive search of actions eliminating the player.

Within the time limit, agent reached depth of 12 for own actions and 9 for the
opponents. Every playout was limited by a given depth (15), and if the game was
not finished, a heuristic function was used instead.



Algorithms – MCTS

There are multiple variants of MCTS for multiplayer games. We have decided to
use Single Player MCTS and rely on the opponents’ predictions.

Additionally, we prune the actions of the initial state, by doing a two turns deep
exhaustive search of actions eliminating the player.

Within the time limit, agent reached depth of 12 for own actions and 9 for the
opponents. Every playout was limited by a given depth (15), and if the game was
not finished, a heuristic function was used instead.



Algorithms – RHEA

As the individual is a vector of actions to perform, it may be the case that some
of the actions are not possible, or result in an immediate agent’s death. We have
decided to ignore both during the evaluation.

All of the parameters, including the best chromosome length, were found experi-
mentally. The optimal chromosome length turned out to be 17. It makes sense,
as it is enough for the agent to “see” two bombs exploding one after the other.

We have considered (µ, λ) and (µ + λ) replacement with full elitism. It seems
that (µ+ λ) replacement is much more efficient as it keeps previously found good
solutions.



Algorithms – RHEA

As the individual is a vector of actions to perform, it may be the case that some
of the actions are not possible, or result in an immediate agent’s death. We have
decided to ignore both during the evaluation.

All of the parameters, including the best chromosome length, were found experi-
mentally. The optimal chromosome length turned out to be 17. It makes sense,
as it is enough for the agent to “see” two bombs exploding one after the other.

We have considered (µ, λ) and (µ + λ) replacement with full elitism. It seems
that (µ+ λ) replacement is much more efficient as it keeps previously found good
solutions.



Algorithms – RHEA

As the individual is a vector of actions to perform, it may be the case that some
of the actions are not possible, or result in an immediate agent’s death. We have
decided to ignore both during the evaluation.

All of the parameters, including the best chromosome length, were found experi-
mentally. The optimal chromosome length turned out to be 17. It makes sense,
as it is enough for the agent to “see” two bombs exploding one after the other.

We have considered (µ, λ) and (µ + λ) replacement with full elitism. It seems
that (µ+ λ) replacement is much more efficient as it keeps previously found good
solutions.



Algorithms – Beam Search

We extended a vanilla Beam Search schema by adding a few enhancements:

• Zobrist hashing (ZH). Deduplicate states by using Zobrist hashing.

• Opponent prediction (OP). Approximate enemies’ as described previously.

• Local beams (LB). Limit the number of states in the same position.

• First move pruning (FMP). Prune all the unsurvivable actions of the initial
state. If there is an action that leads to enemy death, we prune the rest.

• Survivability checking (SC). Highly discourage states in the beam that
are not survivable, by decreasing their scores.



Algorithms – Beam Search

We extended a vanilla Beam Search schema by adding a few enhancements:

• Zobrist hashing (ZH). Deduplicate states by using Zobrist hashing.

• Opponent prediction (OP). Approximate enemies’ as described previously.

• Local beams (LB). Limit the number of states in the same position.

• First move pruning (FMP). Prune all the unsurvivable actions of the initial
state. If there is an action that leads to enemy death, we prune the rest.

• Survivability checking (SC). Highly discourage states in the beam that
are not survivable, by decreasing their scores.



Algorithms – Beam Search

We extended a vanilla Beam Search schema by adding a few enhancements:

• Zobrist hashing (ZH). Deduplicate states by using Zobrist hashing.

• Opponent prediction (OP). Approximate enemies’ as described previously.

• Local beams (LB). Limit the number of states in the same position.

• First move pruning (FMP). Prune all the unsurvivable actions of the initial
state. If there is an action that leads to enemy death, we prune the rest.

• Survivability checking (SC). Highly discourage states in the beam that
are not survivable, by decreasing their scores.



Algorithms – Beam Search

We extended a vanilla Beam Search schema by adding a few enhancements:

• Zobrist hashing (ZH). Deduplicate states by using Zobrist hashing.

• Opponent prediction (OP). Approximate enemies’ as described previously.

• Local beams (LB). Limit the number of states in the same position.

• First move pruning (FMP). Prune all the unsurvivable actions of the initial
state. If there is an action that leads to enemy death, we prune the rest.

• Survivability checking (SC). Highly discourage states in the beam that
are not survivable, by decreasing their scores.



Algorithms – Beam Search

We extended a vanilla Beam Search schema by adding a few enhancements:

• Zobrist hashing (ZH). Deduplicate states by using Zobrist hashing.

• Opponent prediction (OP). Approximate enemies’ as described previously.

• Local beams (LB). Limit the number of states in the same position.

• First move pruning (FMP). Prune all the unsurvivable actions of the initial
state. If there is an action that leads to enemy death, we prune the rest.

• Survivability checking (SC). Highly discourage states in the beam that
are not survivable, by decreasing their scores.



Algorithms – Beam Search

We extended a vanilla Beam Search schema by adding a few enhancements:

• Zobrist hashing (ZH). Deduplicate states by using Zobrist hashing.

• Opponent prediction (OP). Approximate enemies’ as described previously.

• Local beams (LB). Limit the number of states in the same position.

• First move pruning (FMP). Prune all the unsurvivable actions of the initial
state. If there is an action that leads to enemy death, we prune the rest.

• Survivability checking (SC). Highly discourage states in the beam that
are not survivable, by decreasing their scores.



Results



Number of simulations and the depth reached by Beam Search within 100ms.



Influence of Beam Search improvements on agent’s strength compared to the
vanilla (i.e., using only ZH) version. 500 games per each pair.

Enhancement WIN LOSE
ZH 19.00% 19.00%
ZH+OP 44.80% 19.60%
ZH+LB 45.20% 36.20%
ZH+FMP 45.00% 29.20%
ZH+OP+LB+FMP 57.60% 22.60%
ZH+OP+LB+FMP+SC 59.40% 23.40%



Win percentages for each algorithm in 1
vs 1 setting. A single cell shows the win
ratio of the row agent versus the column
agent.

Agents were evaluated on 500 matches.

MCTS RHEA Beam Search
MCTS — 67.80% 2.20%
RHEA 22.40% — 1%

Beam Search 96.60% 99% —

Win percentages of the algorithms in 1
vs 1 vs 1 setting. A single cell shows in
how many games the row agent obtained
a higher score than the column agent.

Agents were evaluated on 1000 matches.

MCTS RHEA Beam Search
MCTS — 68.70% 10.30%
RHEA 23.80% — 3.70%

Beam Search 84.20% 94.90% —



A screenshot from the CodinGame Hypersonic leaderboard2 (taken 27.01.2022),
with our Beam Search algorithm variant on the first position.

2https://www.codingame.com/multiplayer/bot-programming/hypersonic/leaderboard

https://www.codingame.com/multiplayer/bot-programming/hypersonic/leaderboard


A screenshot from CGStats3, showing
detailed win-rates depending on the
number of players.

3http://cgstats.magusgeek.com/app/multi-hypersonic/domiko

http://cgstats.magusgeek.com/app/multi-hypersonic/domiko


Thank you!


