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Abstract. The model of population protocols provides a universal plat-
form to study distributed processes driven by pairwise interactions of
anonymous agents. While population protocols present an elegant and
robust model for randomized distributed computation, their efficiency
wanes when tackling issues that require more focused communication or
the execution of multiple processes. To address this issue, we propose a
new, selective variant of population protocols by introducing a partition
of the state space and the corresponding conditional selection of respon-
ders. We demonstrate on several examples that the new model offers a
natural environment, complete with tools and a high-level description,
to facilitate more efficient solutions.
In particular, we provide fixed-state stable and efficient solutions to two
central problems: leader election and majority computation, both with
confirmation. This constitutes a separation result, as achieving stable
and efficient majority computation requires Ω(logn) states in standard
population protocols, even when the leader is already determined. Addi-
tionally, we explore the computation of the median using the comparison
model, where the operational state space of agents is fixed, and the tran-
sition function determines the order between (arbitrarily large) hidden
keys associated with interacting agents. Our findings reveal that the com-
putation of the median of n numbers requires Ω(n) time. Moreover, we
demonstrate that the problem can be solved in O(n logn) time, both in
expectation and with high probability, in standard population protocols.
In contrast, we establish that a feasible solution in selective population
protocols can be achieved in O(log4 n) time.
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1 Introduction

The standard model of population protocols originates from the seminal paper
[5], providing tools suitable for the formal analysis of pairwise interactions be-
tween simple, indistinguishable entities referred to as agents. These agents are
equipped with limited storage, communication, and computation capabilities.
When two agents engage in a direct interaction, their states change according
to the predefined transition function, which is an integral part of the population
protocol. The weakest possible assumptions in population protocols pertain to
the fixed (constant size) operational state space of agents, and the size of the
population n is neither known to the agents nor hard-coded in the transition
function. It is assumed that a protocol starts in the predefined initial config-
uration of agents’ states representing the input, and it stabilizes in one of the
final configurations of states representing the solution to the considered problem.
In the probabilistic variant of population protocols adopted here, in each step
of a protocol, the random scheduler selects an ordered pair of agents: the ini-
tiator and the responder, which are drawn from the whole population uniformly
at random. The lack of symmetry in this pair is a powerful source of random
bits utilized by population protocols. In the probabilistic variant, in addition
to efficient state utilization, one is also interested in the time complexity, where
the sequential time refers to the number of interactions leading to the stabiliza-
tion of a protocol in a final configuration. More recently, the focus has shifted
to the parallel time, or simply the time, defined as the sequential time divided
by the size nn of the whole population. The (parallel) time reflects on the par-
allelism of simultaneous independent interactions of agents utilized in efficient
population protocols that stabilize in time O(poly log n). All protocols presented
in this paper are stable (always correct) and guarantee stabilization time with
high probability (whp) defined as 1− n−η, for a constant η > 0.

There are already several efficient protocols known for solving central prob-
lems in distributed computing, including leader election [1, 13, 8], majority com-
putation [2, 12], and the plurality problem [7]. While these protocols are efficient
in terms of time, they rely on non-constant state space utilization and operate
indefinitely. That is, they are not able to declare stabilization with probability
1. Moreover, the most efficient protocols are often non-trivial and hard to an-
alyze. One can circumvent some of these deficiencies by relaxing probabilistic
expectations, e.g., by dropping assumptions about the necessity of stabilization
in protocols with predefined input [19], as well as in self-stabilizing protocols [9].
While such relaxation is beneficial, it does not solve some major deficiencies
of the standard model, including depleting in time the number of meaningful
interactions, limited computational power, and inefficient space-time trade-offs.

In order to circumvent some of these deficiencies, we propose a new selective
variant of population protocols by imposing a simple group (partition) structure
on the state space together with a conditional choice of the responder during
random interacting pair selection. This model provides a natural extension of
passive mobile sensor networks adopted in [5], where the focus is on single chan-
nel communication. In the new model the agents communicate over multiple
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communication channels, where each channel corresponds to one of a fixed num-
ber of groups (partitions) of the state space. Specifically, only agents currently
listening on some specific communication channel C (their states belong to the
corresponding group of states GC) are able to receive and respond to messages
transmitted over this channel by agents with state indicating GC as the target
group. Alternative models with biased communication were previously used in
the context of stochastic chemical reaction networks in [23] and data collection
with non-uniform schedulers in [9]. The adopted selective model also refers to
biased choices in nature studied earlier, in the context of small-world phenom-
ena, where closer location in space results in a more likely interaction [18], or
social preference, where agents with a greater array of similar attributes are more
likely to know one another and, in turn, to interact [17]. A different motivation
to study selective population protocols refers to more structural variant of pop-
ulation protocols known as network constructors, in which agents are allowed
to be connected. As the expected parallel time to manipulate a specific edge is
Θ(n), see, e.g., [20, 15], the design of truly efficient protocols in this model is not
currently feasible. Utilizing the concept of selective population protocols, one
can give a higher probabilistic bias to interactions along existing edges, enabling
more efficient computation, comparable to graphical population protocols [3, 4].

Our contribution In this paper, we present initial studies on the (parallel)
efficiency and stability of selective population protocols. We begin by discussing
fundamental properties of this new promising variant, introducing the notion
of fragmented parallel time as an equivalent measure to parallel time in the
standard population protocol model. Additionally, we highlight that selective
protocols offer a natural mechanism for deterministic emptiness (zero) testing.
It is known, as indicated in [6], that such a test enables efficient simulation of
O(log n)-space Turing Machines with high probability. In contrast, we highlight
that such simulations in selective protocols are not only efficient but also sta-
ble. Selective protocols can be utilized to design algorithms within this class
that are both efficient and stable. Furthermore, we present fixed-state efficient
and stable solutions to two central problems: leader election and majority com-
putation (with confirmation, i.e., all agents stabilize while being aware of the
conclusion of the process). This result is noteworthy as stable efficient majority
computation requires Ω(log n) states in standard population protocols [2], even
when the leader is given. We also introduce the first non-trivial study on median
computation in population protocols. We adopt a comparison model in which
the operational state space of agents is constant, and the transition function
determines the order between (arbitrarily large) hidden keys associated with the
interacting agents. We demonstrate that computing the median of n numbers
requires Ω(n) parallel time and the problem can be solved in O(n log n) paral-
lel time in expectation and with high probability (whp) in standard population
protocols. In contrast, we present an efficient median computation in selective
population protocols, achieving O(log4 n) parallel time. Furthermore, we delve
into suitability of selective protocols for the high-level design of algorithms.
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Please note that due to space restrictions the proofs of Lemmas 3, 4, 5, 6, 7,
8, 9, and Proposition 1 can be found in the full version of this paper [14].

2 Selective Population Protocols

As discussed in Section 1, in the standard population protocol model, the ran-
dom scheduler draws consecutive pairs of interacting agents uniformly at random
from the entire population. This is done irrespective of whether the states of in-
teracting agents match some rule of the transition function or not. Consequently,
many random pairwise interactions do not result in a transition and, in turn, do
not bring the population closer to a final configuration.

In selective population protocols random interactions are scheduled differently.
Specifically, the fixed-state space of agents S is partitioned into l groups of states
G1,G2, . . . ,Gl. In addition, any state s is mapped onto its target group Gi(s).
We say that an interaction is internal if s ∈ Gi(s), and is external otherwise.
This mapping is used during an attempt to form a random pair of interacting
agents. The random scheduler first draws the initiator in state s uniformly from
the whole population. This is followed by drawing the responder uniformly from
all agents (different to the initiator) currently being in any state t belonging to
the target group Gi(s). Such interaction is denoted by s+ Gi(s)|t, where t = null
when no responder is currently available in any state of Gi(s). The rules of the
transition function refer to two types of outcomes of interaction attempts:

1. Biased communication
Meaningful interaction (successful biased interaction attempt)

s+ Gi(s)|t → s′ + t′.
The purpose of meaningful interactions is to advance and in turn to maintain
efficiency of the computing process.

2. Interaction availability test
Emptiness (zero) test (unsuccessful external interaction attempt)

s+ Gi(s)|null → s′.
Singleton test (unsuccessful internal interaction attempt)

s+ Gi(s)|null → s′.
The two tests primarily confirm completion of computation processes.

One-way epidemic Consider a communication primitive known as one-way
epidemic [6] in which state 1 of the source agent is propagated to all other
agents initially being in state 0. The transition function has only one rule in
the standard population protocol model 1 + 0 → 1 + 1. It is known that such
epidemic process is stable and efficient, i.e., one-way epidemic stabilises with the
correct answer in parallel time O(log n) whp, however during the final stages of
the epidemic process the expected fraction of meaningful interactions decreases
dramatically. Assume, that the state space S = {0, 1} is partitioned into two
singleton groups G0 = {0} and G1 = {1} in the new variant, and we have two
transition rules instead:



Selective Population Protocols 5

(1) 1 + G0|0 −→1 + 1 (2) 1 + G0|null −→Stop

Now every interaction initiated by an agent in state 1 is either meaningful,
when there are still uninformed agents, or changes the initiator’s state to Stop,
which indicates the end of the epidemic process, and in turn the next stage of
computation not requiring group G0.

2.1 Beyond Presburger Arithmetic

We find in [6] that the emptiness test, also known as zero test, is a powerful
tool enabling efficient simulation of O(log n)-space Turing Machine. The two-
stage randomised simulation from [6] is based on simulation of Register Machines
known to be equivalent with O(log n)-space Turing Machines [21]. This approach
hinges on the presence of a unique leader, crucial for achieving efficient and
stable computations, which efficient computation requires at least Ω(log log n)
states [1]. An alternative randomized two-stage simulation of Turing Machines,
detailed in [23] within the context of a related stochastic chemical reaction net-
work model, utilises the concept of clockwise Turing Machines [22]. Both simu-
lations rely on zero tests, the correctness of which can be assured only with high
probability in the adopted models, rendering them unsuitable for deployment
in stable protocols. In contrast, selective protocols equipped with deterministic
emptiness test provide a suitable platform for the design of efficient and stable
fixed-state solutions in O(log n)-space complexity class.

As the primary focus of this paper centers on the (parallel) efficiency of
selective population protocols, and the computational power of such protocols
is inherited from standard population protocols, we direct the reader to [6] for
full simulation details. Instead, our current study delves into the parallelism of
selective protocols, presenting several separation results. This includes majority
computation, where any efficient stable algorithm in standard protocols requires
Ω(log n) states while a fixed-state space allows for an O(log n)-time stable solu-
tion, as demonstrated in Section 2.4.

Several efficient algorithms presented in this paper follow a more direct ap-
proach, relying on a single stabilization process. Examples include the efficient
and stable leader election and majority computation discussed in Sections 2.3
and 2.4, respectively. However, in more complex solutions, the need arises for
a leader to act as the "program counter," overseeing the proper execution of
potentially numerous individual stabilization processes encoded in the transi-
tion function in the correct order. This encompasses the preparation of input
for each individual process, ensuring its proper termination, and further inter-
preting the output. It’s worth noting that, due to state partitioning in selective
protocols, each individual stabilization process can be executed on a distinct par-
tition of states. This allows several processes to run efficiently at the same time,
as demonstrated in the efficient ranking protocol presented in Section 4, where
multiple leaders are employed. The leader is also responsible for translating the
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output from one process to the input of its successor. This is achieved by rewrit-
ing states (from one partition to another) via one-way epidemic. Ultimately, the
termination of any process, including rewriting, is recognized through either an
emptiness or singleton test.

2.2 Parallelism of Selective Protocols

Recall that in population protocols, the (parallel) time of a sequence I of in-
teractions is defined as |I|/n. This definition is motivated by the observation
that in a sequence of xn interactions, each agent has, on average, x interactions.
However, it is noteworthy that only for x = Ω(log n) does each agent engage
in Θ(x) interactions whp. An interesting finding presented in [11] demonstrates
that in this latter case, the sequence I can be simulated in time Θ(x) on a paral-
lel computer whp. In the new variant, where the choice of the responder is likely
biased, we must adopt a more nuanced definition of parallelism.

Fragmented Parallel Time In the novel selective variant of population proto-
cols, the initiator is uniformly chosen at random. Consequently, in a sufficiently
long sequence of interactions, any agent serves as the initiator with the same fre-
quency, aligning with the pattern observed in the standard model. This stands
in contrast to the selection of responders, where certain agents are more likely to
be chosen than others. For example, consider an epidemic process with the state
space S = {0, 1, 1∗} partitioned into groups: G0 = {0} with uninformed agents,
G1 = {1} with active informers, and G1∗ = {1∗} with informed and already
rested agents, governed by two transition rules:

(1) 0 + G1|1 −→1∗ + 1 (2) 1 + G0|null −→1∗

If in the initial configuration there is exactly one informed agent in state 1,
all other agents in state 0 contact this agent to get informed and rest, see rule
(1). In the last meaningful interaction rule (2) rests the unique informer. While
the number of interactions before stabilisation with all agents resting in state 1∗

is O(n log n) whp, the parallelism of this epidemic process is very poor as only
one agent informs others as the responder.

This potential imbalance in the workload of individual agents can be captured
by tracking the frequency at which agents act as responders. To handle this
imbalance, we propose a more subtle definition of (parallel) time. This new
definition is whp asymptotically equivalent to the definition and the properties
of time used in the standard model, see Lemma 1.

Definition 1 (Fragmented parallel time). Consider ways to divide the se-
quence of interactions I into subsequent disjoint chunks, where each chunk is a
sequence of consecutive interactions in which any agent has at most 10 lnn in-
teractions as the responder. If the minimum number of chunks for such divisions
is k, then we say that the fragmented parallel time, or in short the fragmented
time, is TF = k lnn.
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Recall that η is the quality parameter in the definition of high probability.

Lemma 1. Consider a sequence of interactions I in the standard population
protocol model executed in time T = |I|/n. If the fragmented time TF = k lnn,
for k > 11η/35 and large enough n, then T/10 ≤ TF ≤ 2T whp.

Proof. The total number of interactions during fragmented time TF does not
exceed 10kn lnn, ensuring T

10 ≤ TF . It remains to show that TF ≤ 2T whp.
Let us first estimate the probability that a given chunk corresponds to time

smaller than lnn. This probability is not greater than the probability that in
time lnn (starting at the beginning of the chunk) some agent has the responder
type interactions greater than 10 lnn. By Chernoff bound§, the probability that
in time lnn a given agent experiences X > 10 lnn = 10EX interactions as the
responder can be estimated by

Pr(X > 10 lnn) =Pr (X > (1 + 9)EX)

< exp

(
− 92

2 + 9
EX

)
= exp

(
−81

11
lnn

)
= n−81/11.

By the union bound the probability that in time lnn some agent interacts as
the responder more than 10 lnn times is smaller than n−70/11. Thus, for n large
enough and 11η/35 < k, the probability that at least half of k chunks correspond
to time smaller than lnn does not exceed(

k

k/2

)(
n−70/11

)k/2

< 2kn−35k/11 < (2kn−k/5)n−η < n−η.

In turn, whp we obtain time at least k
2 lnn, and TF ≤ 2T . ⊓⊔

We introduce a lemma for analyzing fragmented time in the new model, cru-
cial for the examination of leader election and majority computation protocols.

Lemma 2. Consider an interval of interactions I, s.t., |I| > 110
35 ηn lnn. If every

agent acts as the responder in an external interaction in I at most once, then
the fragmented parallel time of I is Θ(|I|/n) whp.

Proof. The total number of fragmented time chunks is at least k ≥ |I|
10n logn , thus

TF ≥ |I|
10n . We demonstrate that TF ≤ 2|I|

n with high probability.
Consider a fixed agent in a given interaction. We first observe that the prob-

ability of an event A, that an interaction is internal and this agent acts as the
responder is at most 1/n. For an agent belonging to a group of size 1, when this
agent can be counted as both the initiator and the responder, the probability of
event A does not exceed 1/n. For an agent belonging to a group of size g > 1
this probability is at most g−1

n · 1
g−1 = 1

n .

§We utilise the Chernoff bound variant: Pr (X > (1 + δ)EX) <
exp

(
−δ2EX/(1 + δ)

)
for δ > 0.
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Let us divide all interactions into maximal subseries such that for any fixed
agent there are at most 10 lnn−1 events A involving this agent. Note that these
subseries are simultaneously chunks of interactions in which any agent acts as
the responder at most 10 lnn times since any agent is a responder in I in an
external interaction at most once. Let us first estimate the probability that a
given subseries has less than n lnn interactions. This probability is not greater
than the probability that during n lnn interactions (counting from the beginning
of the subseries) event A happens for some agent at least 10 lnn times. Using
calculations from Lemma 1, one can estimate that this probability for a specific
agent is smaller than n−81/11.

By the union bound the probability that in a given subseries event A occurs
for some agent at least 10 lnn times does not exceed n−70/11. Analogously to the
proof of Lemma 1, for sufficiently large n and k ≥ |I|

10n lnn > 11η
35 , the probability

that at least half of the k subseries correspond to times smaller than lnn is n−η.
As this occurs with negligible probability, we get time at least 2|I|

n whp. ⊓⊔

Recall that if a group is a singleton, an attempt to execute pairwise interac-
tion within this group fails. This is observed by the initiator via singleton test.
Note also that such failed interactions do not affect parallelism as each failed
interaction is attributed to the initiator. The next lemma enables the analysis
of more complex protocols using the leader.

Lemma 3. Consider an interval of interactions I, s.t., |I| > 60
13ηn lnn. Assume

also that every agent acts as the responder in an external interaction, which is
not initiated by the leader in |I| at most once, then the fragmented time of I is
Θ(|I|/n) whp.

2.3 Leader Election

In leader election (with confirmation) at least one agent from the initial config-
uration is a candidate to become the unique leader, and all other agents start as
followers. The main goal in leader election is to distinguish and report selection
of the unique leader, and to declare all other agents as followers. The state space
of the leader election protocol presented below is S = {L,L∗, F, F ∗}, where
all initial leader and follower candidates are in states L and F, respectively.
The remaining states include L∗ referring to the confirmed unique leader, and
F ∗ utilised by confirmed followers. The state space is partitioned into two groups
G0 = {L,L∗, F ∗} and G1 = {F}.

LE-protocol: As at least one agent starts in state L, these agents target
group G0 using a double rule (1) and (2) and when state L∗ is eventually reached,
with exactly one agent being in this state, the epidemic process defined by the
transition rules (3)-(4) informs all followers about successful leader election.

(1) L+ G0|L −→L+ F

(2) L+ G0|null −→L∗
(3) L∗ + G1|F −→L∗ + F ∗

(4) F ∗ + G1|F −→F ∗ + F ∗

Lemma 4. The fragmented time of fixed-state LE-protocol is O(log n) whp.
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2.4 Majority Computation

The state space of the majority protocol is S = {G,G∗, R,R∗, N}, and in the
initial configuration each agent is either in state G or R. The main goal is
to decide which subpopulation of agents in state G or R is greater than the
other. If the subpopulation in state G is greater, all agents are expected to
stabilise in state G∗. Otherwise, they must stabilise in state R∗. The majority
protocol M-protocol described below uses also neutral state N . The state space
is partitioned into three groups GR = {R,R∗}, GN = {N}, and GG = {G,G∗}.

M-protocol: The protocol has the following transition rules:

(1) R+ GG|G −→N +N

(2) R+ GG|null −→R∗

(3) G+ GR|R −→N +N

(4) G+ GR|null −→G∗

(5) R∗ + GN |N −→R∗ +R∗

(6) G∗ + GN |N −→G∗ +G∗

Transition rules (1) and (3) instruct agents in states R and G to become
neutral for as long as pairs R+G and G+R can be formed. As soon as one of
these states is no longer present in the population either rule (2) or (4) is used
to change state R to R∗ or G to G∗, respectively. In addition, either rule (5) or
(6) is used to change neutral state to R∗ or G∗, respectively. Alternatively, if all
states G and R disappear after application of rules (1) and (3), the population
stabilises in the neutral state N.

Lemma 5. The fragmented time of fixed-state M-protocol is O(log n) whp.

3 Computing the Median

In this section, we consider computing the median of n distinct keys, each of
which is held by one of the n agents. For agents a, b belonging to the set S of
agents, the relation b < a denotes key(a) < key(b). We adopt here a comparison
model in which the transition function depends not only on the states of the
agents, but also on the order of their keys. The keys are hidden and there is
no other way to access them. The number of states remains fixed. A similar
limited use of large keys can be found in community protocols in [16] to handle
Byzantine failures.

For any agent c ∈ S, let Ac and Bc be the set of all agents above and below
c respectively. The agent m is the unique median if |Bm| − |Am| = 0, for odd n,
or one of the two medians if ||Bm| − |Am|| = 1, for even n. In this version
we assume that all keys are different and n is odd. The arbitrary case requires
minor amendments, as the answer may refer to two agents. Before we consider
selective protocols, we first consider median computation in comparison model
with a standard random scheduler.

3.1 Median Computation in Standard Model

Theorem 1. Finding the median in the comparison model requires Ω(n) time
in expectation.
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Proof. Assume that n is odd and agents a1 and a2 share between themselves
the median and the key immediately succeeding it (in the total order of keys).
One can observe that before the first interaction between a1 and a2, all consec-
utive configurations of states of all agents are independent from whether a1 or
a2 is associated with the median. Thus before the first interaction between a1
and a2 no algorithm can declare either of them as the median. And since the
expected number of interactions preceding the first interaction between a1 and
a2 is Ω(n2), the thesis of the theorem follows. ⊓⊔

Now we formulate an almost optimal median population protocol in the
adopted model. All agents start this protocol in neutral state N. In due course,
agents change their states, s.t., eventually all agents associated with keys smaller
than the median end up in state B, those with keys greater than the median
in state A, and the median conclude in state N. The median protocol uses the
following symmetric transition function:

(1) N +N
<−→B +A ▷ initialisation

(2) A+B
<−→B +A ▷ fix order

(3) A+N
<−→N +A ▷ fix order

(4) N +B
<−→B +N ▷ fix order

Note that there is always the same number of agents in states B and A and
one agent will remain in state N as n is an odd number.

Theorem 2. The fixed-state median protocol operates in O(n log n) time both
in expectation and whp.

Proof. We say that a pair of agents a and b is disordered if an interaction between
a and b is meaningful. We define the disorder d(C) of a configuration C as the
total number of disordered pairs of agents in this configuration. Since all agents
start in state N, any initial interaction is meaningful, via application of rule (1).
And in turn the disorder of the initial configuration is d(C0) =

(
n
2

)
. In the final

configuration C∞, when the agent with the median key is in state N, and all
agents with smaller and larger (than the median) keys are in states B and A
respectively, the disorder d(C∞) = 0, as none of the rules can be applied.

Proposition 1. Any meaningful interaction reduces the disorder of a configu-
ration.

The probability of making a meaningful interaction in a configuration C, s.t.,
d(C) = i is pi = i/

(
n
2

)
. Let the random variable Ti be the number of interactions

needed to observe a meaningful interaction for a configuration C when d(C) = i.
We have E[Ti] =

(
n
2

)
/i. The expected number of interactions E[T ] to transition

from C0 to C∞ is

E[T ] ≤ E[T1] + E[T2] + · · ·+ E
[
T(n2)

]
=

(
n

2

)
H(n2)

= O(n2 log n).

One can also prove that T = O(n2 log n) whp applying Janson’s bound.
However, we show here an alternative proof by a potential function argument.
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In particular, we show that for two subsequent configurations C and C ′ we
have E[d(C ′)] ≤

(
1− 2

n2

)
d(C). This inequality becomes trivial when d(C) = 0.

Otherwise, when d(C) ̸= 0,

E[d(C ′)] ≤
(
1− 2d(C)

n2

)
d(C) +

2d(C)

n2
(d(C)− 1) =

(
1− 2

n2

)
d(C).

After t interactions beyond configuration C0 we get E[d(Ct)] ≤
(
1− 2

n2

)t
d(C0) ≤

exp
(
− 2t

n2

) (
n
2

)
. We obtain E[d(Ct)] < n−η for t ≥

(
n
2

) (
ln n2

2 + ln η
)
. Finally,

when E[d(Ct)] < n−η, by Markov’s inequality, we get Pr(d(Ct) ≥ 1) < n−η.
This is equivalent to Pr(Ct ̸= C∞) < n−η. ⊓⊔

3.2 Fast Median Computation

We present and analyse here efficient median computation in selective population
protocols. The proposed solution is done by breaking up the full protocol into
smaller blocks implemented as independent stabilisation processes with clearly
defined inputs and outputs, as well as efficient and stable solutions. Each of
these independent processes (see Fast-median algorithm below) including leader
(pivot) election, partitioning agents wrt the key of the pivot, and majority com-
putation, is executed on distinct partitions of states. Recall from Section 2.1
that the leader elected in the beginning of the computation process executes
the code of the solution embedded in the transition function, and manages all
input/output operations.

Algorithm 1 Fast-median.
Input: S – all agents set, C = S – median candidate set
1: Select randomly leader (as pivot) p ∈ S ▷ leader election
2: repeat
3: Partition S to Bp = {x ∈ S : x < p},Ap = {x ∈ S : x > p}, {p};
4: switch ▷ majority computation
5: case (|Bp| > |Ap|) −→ C = C ∩ Bp

6: case (|Bp| < |Ap|) −→ C = C ∩ Ap

7: case (|Bp| = |Ap|) −→ C = {p}
8: p← randomly chosen (by current p) agent in C ▷ leader hand over
9: until (|Bp| = |Ap|)

10: return p ▷ result announcement

Recall that leader election and majority computation, were discussed in Sec-
tions 2.3 and 2.4, respectively. Thus the focus in this section is on efficient
partitioning of all agents in S to Bp = {x ∈ S : x < p},Ap = {x ∈ S : x > p},
and {p}. Note that such partitioning is not trivial as due to the restrictions in
the model the pivot p cannot distribute the value of its key to all agents in the
population. Instead, the agents gradually learn their relationship with respect
to the pivot by comparing their keys with other agents.
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Theorem 3. Fixed-state Fast-median protocol stabilises in fragmented parallel
time O(log4 n) whp.

Proof. The proof is located at the end of Section 3.2. ⊓⊔

Partitioning via Coloring We commence by providing an overview of the ar-
gument. The partitioning of all agents occurs in multiple phases, represented
by consecutive stabilization processes. The objective in each phase is to cor-
rectly partition a constant fraction of agents that have not been partitioned
yet. Each phase has a time complexity of O(log2 n). Since partitioning requires
O(log n) phases, the overall time complexity becomes O(log3 n).

In the median protocol, we execute O(log n) partitioning steps, which con-
stitute the majority of the computation time. Consequently, the total time com-
plexity for computing the median is O(log4 n). To analyze a single phase of
partitioning, we categorize the set of uncolored agents above the pivot into
2 log n buckets, and similarly for those below the pivot. We then demonstrate
that within O(log2 n) time, the algorithm successfully colors log n agents from
the first bucket. In each successive time period indexed by i = 2, 3, . . ., with a
duration of O(log n), the algorithm colors 2i−1 log n agents in the i-th bucket.
Consequently, after O(log2 n) time from the initiation of a phase, a constant
fraction of uncolored agents acquires colors.

The input for the partitioning process consists of the leader agent in the pivot
state P and all other agents in the state Nin. We utilize two groups of states:
G = {P,B0, . . . , B21, A0, . . . , A21, N} and Gin = {Nin}. We interpret states At,
Bt, and N as above, below, and neutral colors, respectively. An agent adopts
state At (Bt) as soon as it learns that its key is above (below) the key of the pivot.

During each phase, we color approximately a fraction of 1/22 of yet uncolored
agents. Upon the conclusion of the phase, these agents are moved to a different
group, i.e., they do not participate in the partitioning of uncolored agents in the
remaining phases.

In order to limit the activity of colored agents and, in turn, the duration of
each phase, we introduce the concept of tickets. While the pivot has an unlimited
number of tickets, any newly colored agent receives a fixed pool of 21 tickets.
For as long as any colored agent has tickets, it targets agents in group Gin trying
to color them. During such an interaction, a colored agent loses one ticket and
moves one agent from Gin to G. Once a colored agent loses all its tickets, it starts
targeting group G. The (partial) coloring phase concludes when the group Gin

becomes empty. The set of relevant rules is given below.

(1) P + Gin|Nin
<−→P +A21

(1) P + Gin|Nin
>−→P +B21

(2) Bt>0 + Gin|Nin
<−→Bt−1 +N

(2) Bt>0 + Gin|Nin
>−→Bt−1 +B21

(2) B0 + G|N
>−→B0 +B21

(3) At>0 + Gin|Nin
>−→At−1 +N

(3) At>0 + Gin|Nin
<−→At−1 +A21

(3) A0 + G|N
<−→A0 +A21

(4) N + G|P <−→B21 + P

(4) N + G|P >−→A21 + P

(4) N + G|Bt
<−→B21 +Bt

(4) N + G|At
>−→A21 +At
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We formulate here a tail bound that works for hypergeometric sequences for
the case of small fraction p of black balls. We need this more sensitive bound in
some of our proofs.

Lemma 6. Assume we have an urn with n balls where pn of them are black.
Let Xi be a binary random variable equal to one iff in the ith draw without
replacement the drawn ball was black, and let X =

∑κ
i=1 Xi. Then, for κ ≤ n

and 0 < δ < 1, we get Pr (X < (1− δ)pκ− p) < κ exp
(

−δ2pκ
2

)
.

Denote the number of agents participating (not previously colored) in the
phase by m. For any interaction t, let k(t) be a number of agents in group G
in t and Inf x(t) be a number of informed agents which are in states A or B
in bucket x. The sequence of useful technical lemmas leading to the thesis of
Theorem 4 follows.

Lemma 7. If during interaction t the number of colored agents is r ≥ log2 n,
then k(t+ 500n) ≥ min{20r,m} whp.

Lemma 8. The fragmented time of one phase of partitioning by coloring is
O(log2 n) whp.

Lemma 9. There is a constant c > 0, such that if |[t0, t1)| = cn log2 n and
|[ti−1, ti)| = cn log n for all i > 1, then whp

– k(ti) ≥ min
{
20 · 2i−1 log2 n,m

}
,

– Inf i(ti) > min
{
2i−1 log n, m

10 logn

}
.

The phase ends when group Gin becomes empty. Each agent is relocated from
Gin to G only if it either gets properly colored or it was given a ticket. Since each
colored agent has only 21 tickets to utilise, we can formulate the following fact.

Fact 1 After single coloring phase a fraction of 1
22 uncolored agents gets colored.

Thus, after O(log n) iterations of the coloring phase all agents are properly
colored. This leads to the following theorem.

Theorem 4. Partitioning by coloring stabilises in O(log3 n) fragmented time.

We conclude with the proof of Theorem 3.

Proof (of Theorem 3). The structure of the solution replicates the logic of a
standard median computation protocol. Thus, the correctness of the solution
follows from the correctness of the individual routines including leader election,
majority computation and partitioning.

Concerning the time complexity, leader election and majority computation
are implemented in fragmented parallel time O(log n) whp, see Lemmas 4 and 5.
By Theorem 4, each partitioning stage takes O(log3 n) time whp, and with prob-
ability 1

2 at most 3
4 candidates remain in C. Thus, with high probability after at

most O(log n) iterations of this routine set C is reduced to a singleton containing
the median.

Finally, Fast-median protocol stabilises in O(log4 n) parallel time. ⊓⊔
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4 Further Discussion

Suitable Programming Environment It is a natural solution to articulate
solutions in any computational model using pseudocode. Such representation
enhances the readability and understanding of the proposed solution within the
context of the main features of the underlying computational model. Subse-
quently, this aids in conducting rigorous mathematical analysis. Various pseu-
docodes have been explored in the past to address challenges in population pro-
tocols, encompassing simple protocols [19], separation bounds [10], and leader-
based computation [6]. The latter work forms the basis for our approach, which
here focuses on the development of efficient parallel protocols. Our objective is
to champion selective population protocols, enabling the development of simpler
and more structured efficient solutions presented at higher programming level.
The primary reasons for advocating this approach stem from the partitioning of
the state space. Each partition represents the local variables of an independent
process, supported by conditional interactions that also facilitate independent
interaction availability (zero) tests. This, in turn, eliminates the necessity for a
global clocking mechanism through the application of event-based distributed
computation. For further detail consult the full version of this paper [14].

Final Comment We would like to postulate that the efficiency of selective pro-
tocols stand out when tackling problems that demand more extensive memory
utilization and yield intricate outputs. A good example is the ranking problem,
requiring assignment of unique labels from the range 1 to n to all agents, ex-
amined recently in the context of leader election in self-stabilizing protocols [9],
and related sorting problem in the constructors model [15]. For these two prob-
lems, currently, no efficient solutions based on a polynomial number of states are
known in standard population protocols. We would like to assert the following.

Conjecture 1. Any efficient solution to the sorting problem necessitates expo-
nential state space in standard population protocols.

On the contrary, the evidence presented in the full version [14] demonstrates
that selective protocols can efficiently solve sorting by ranking using a much
smaller number of states. Specifically, we present transition rules of an efficient
quick-sort-like, selective sorting by ranking. This algorithm has polynomial in n
state space, utilises O(n) partitions and stabilises in time O(log2 n).
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