
Online Evolution for Multi-Action Adversarial Games

Niels Justesen1, Tobias Mahlmann2, and Julian Togelius3

1 IT University of Copenhagen njustesen@gmail.com
2 Lund University tobias.mahlmann@lucs.lu.se

3 New York University julian@togelius.com

Abstract. We present Online Evolution, a novel method for playing turn-based
multi-action adversarial games. Such games, which include most strategy games,
have extremely high branching factors due to each turn having multiple actions.
In Online Evolution, an evolutionary algorithm is used to evolve the combination
of atomic actions that make up a single move, with a state evaluation function
used for fitness. We implement Online Evolution for the turn-based multi-action
game Hero Academy and compare it with a standard Monte Carlo Tree Search
implementation as well as two types of greedy algorithms. Online Evolution is
shown to outperform these methods by a large margin. This shows that evolu-
tionary planning on the level of a single move can be very effective for this sort
of problems.

1 Introduction

Game-playing can fruitfully be seen as search: the search in the space of game states
for desirable states which are reachable from the present state. Thus, many successful
game-playing programs rely on a search algorithm together with a heuristic function
that scores the desirability (usually related to the probability of winning given that
state). In particular many adversarial two-player games with low branching factors,
such as Checkers and Chess, can be played very well by the Minimax algorithm [15]
together with a state evaluation function. Other games have higher branching factors,
which greatly reduces the efficacy of Minimax search, or make the development of in-
formative heuristic functions very hard as many game states are deceptive. A classic
example is Go, where computer players for a long time performed poorly. For such
games, Monte Carlo Tree Search (MCTS) [4] tends to work much better; MCTS han-
dles higher branching factors well by building an unbalanced tree, and performs state
estimations by Monte Carlo simulations until the end of the game. The advent of the
MCTS algorithm caused a qualitative improvement in the performance of Go-playing
programs [2].

Many games, including all one-player games and many one-and-a-half-player games
(where the player character faces non-player characters), are not adversarial [6]. These
include many puzzles and video games. For such games, the game-playing problem is
similar to a classic planning problem, and methods based on best-first search become
applicable and in many cases effective. For example, a version of A* plays Super Mario
Bros very well given reasonably linear levels [20]. But MCTS is also useful for many
non-adversarial games, in particular with high branching factors, hidden information
and/or non-deterministic outcomes.



First-Play Urgency (FPU) is one of many enhancements to MCTS for games with
large branching factor [7]. FPU encourages early exploitation by assigning a fixed score
to unvisited nodes. Rapid Action Value Estimation (RAVE) is another popular enhance-
ment that has been shown to improve MCTS in Go [9]. Script-based approaches such
as Portfolio Greedy Search [5] and Script-based UCT [11] deals with the large branch-
ing factor of real-time strategy games by exploring a search space of scripted behaviors
instead of actions.

Recently, a method for playing non-adversarial games called rolling horizon evolu-
tion was introduced [17]. The basic idea is to use an evolutionary algorithm to evolve
a sequence of actions to perform and during the execution of these actions a new ac-
tion sequence is evolved. This process is continued until the game is over. This use
of evolution differs sharply from how evolutionary algorithms are commonly used in
game-playing and robotics, to evolve a controller that later selects actions [21, 3, 22].
The fitness function is the desirability of the final state in the sequence, as estimated
by either a heuristic function or Monte Carlo playouts. This approach was shown to
perform well on both the Physical Travelling Salesman Problem [16] and many games
in the General Video Game Playing benchmark [13]. However, rolling horizon evolu-
tion cannot be straightforwardly applied to adversarial games, as it does not take the
opponent’s actions into account; in a sense, it only considers the best case.

In this paper, we consider a class of problems which has been relatively less studied,
and for which none of the above described methods perform well. This is the problem
of multi-action turn-based adversarial games, where each player each turn takes mul-
tiple separate actions, for example by moving multiple units or pieces. Games in this
class include strategy games played either on tabletops or using computers, such as
Civilization, Warhammer 40k or Total War; the class includes games more similar to
classic board games, such as Arimaa, and arguably many real-world problems involv-
ing the coordinated action of multiple units. The problem with this class of games is
the branching factor. Whereas the average branching factor hovers around 30 for Chess
and 300 for Go, a game where you move six units every turn and each unit can do one
out of ten actions has a branching factor of a million. Of course, neither MiniMax nor
MCTS work very well with such a number; the trees become very shallow. The way
such games are often played in practice is by making strongly simplifying. For exam-
ple, if you assume independence between units your branching factor is only 60, but
this assumption is typically wrong.

Rolling horizon evolution does not work on the class of games we consider either
for the reason that they are adversarial. However, evolution can still be useful here, in
the context of selecting which actions to take during a single move. The key observation
here is that we are only looking to know which turn to take next, but finding the right
combination of actions to compose that turn is a formidable search problem in itself.
The method we propose here, which we call online evolution, evolves the actions in a
single turn and uses an estimation of the state at the end of the turn (right before the
opponent takes their turn) as a fitness function. It can be seen as a single iteration of
rolling horizon evolution with a very short horizon (one turn).



In this paper, we apply online evolution to the game Hero Academy. It is contrasted
with several other approaches, including MCTS, random search and greedy search, and
shown to perform very well.

2 Methods

This section presents our testbed game, our methods for reducing the search space and
evaluating game states, and search algorithms we test, including MCTS and Online
Evolution.

2.1 Testbed Game: Hero Academy

Our testbed, a custom-made version4 of Hero Academy5, is a two-player turn-based
tactics game inspired by chess and is very similar to the battles in the Heroes of Might
& Magic series. Figure 1 shows a typical game state. Players have a pool of combat
units and spells at their disposal to deploy and use on a grid-shaped battle field. Tactical
variety is achieved by different unit classes that fulfil different combat roles (fighter,
wizard, etc.) and the mechanic of “action points”. Each turn, the active player starts
with five action points, which can be freely distributed among units on the map, deploy
new units, or cast spells. Especially noteworthy is that a player may chose to distribute
more than one action point per unit, i.e. let a unit act twice or more times per turn. A
turn is completed once all five action points are used. The game itself has no turn limit
while our experiments did implement a limit of 100 turns per player. The first player
to eliminate the enemy’s units or base crystals wins the game. For more details on the
implementation, rules, and tactics on the game, we kindly ask the reader to refer to the
Master thesis referenced as [10].

The action point mechanic makes Hero Academy very challenging for decision mak-
ing algorithms due to the number of possible future game states which is significantly
higher than in other games. Many different action sequences may however, lead to the
same end turn game state as units can be moved freely in any order. In the following,
we present and discuss different methods in regard to this problem.

2.2 Action Pruning & Sorting

Our implemented methods used action pruning to reduce the enormous search space
of a turn by removing (pruning) redundant swap actions and sub-optimal spell actions
from the set of available actions in a state. Two swap actions are redundant if they swap
the same kind of item and one can be removed as they produce the same outcome. A
spell action is sub-optimal if another spell action covers the same or more enemy units.
In this way spells that do not target any enemy units will also be pruned because it is
always possible to target the opponent’s crystals.

For some search methods, it makes sense to investigate the most promising moves
first and thus a method for sorting actions is needed. A simple way would be to evaluate

4 https://github.com/njustesen/hero-aicademy
5 http://www.robotentertainment.com/games/heroacademy/



Fig. 1: A typical game state in Hero Academy. The screenshot is from our own imple-
mentation of the game.

the resulting game state of each action, but this is usually a slow method. The method
we implemented rates an action by how much damage it deals or how much health it
heals. If an enemy unit is removed from the game, it is given a large bonus. In the same
way, healing actions are awarded a bonus if they are saving a knocked out unit. In this
way, critical attack and healing actions are rated high and movement actions are rated
low.

2.3 State Evaluation

Several of our algorithms require an evaluation of how “good” a certain state for a
player is. For this case, we used a heuristic to evaluate the board in a given state. This
heuristic is based on the difference between the values of both players’ units, assuming
it as the main indicator for which player is winning. This includes the units on the game
board and those which are still at the players’ disposal. Furthermore, the value of a unit
u is calculated using a linear combination as follows:

v(u) = uhp + umaxhp × up(u)︸ ︷︷ ︸
standing bonus

+

equipment bonus︷ ︸︸ ︷
eq(u)× up(u)

+ sq(u)× (up(u)− 1)︸ ︷︷ ︸
square bonus

(1)

whereas uhp is the number of health points u has, sq(u) adds a bonus based on the
type of square u stands on, and eq(u) adds a bonus based on the unit’s equipment. For
brevity, we will not discuss these in detail, but instead list the exact modifiers in Table 1.



Lastly, the modifying term up(u) is defined as:

up(u) =

{
0, if uhp = 0

2, otherwise
(2)

This will make standing units more valuable than knocked out units.

Dragonscale Runemetal Helmet Scroll

Archer 30 40 20 50
Cleric 30 20 20 30
Knight 30 -50 20 -40
Ninja 30 20 10 40
Wizard 20 40 20 50

(a) Bonus added to units with items.

Assault Deploy Defence Power

Archer 40 -75 80 120
Cleric 10 -75 20 40
Knight 120 -75 30 30
Ninja 50 -75 60 70
Wizard 40 -75 70 100

(b) Bonus added to units with items.

Table 1: For completeness, we list the modifiers used by our game state evaluation
heuristic.

2.4 Tree Search

Game-tree based methods have gained much popularity and have been applied with
success to a variety of games. In short, a game tree is a acyclic directed graph with one
source node (the current game state is the root) and several leaf nodes. Its nodes depict
hypothetical future game states and its edges define the players’ actions that would lead
to these states. A node has therefore as many edges leading from it, as the number of
actions available for the active player in that game state. Additionally, each edge is
assigned a value, and the edge leading from the actual gamestate (the root node of the
tree) with the highest value is considered the best current move. In adversarial games, it
is common that players take turns and hence the active player alternates between plies
of the tree. The well-known Minimax algorithm makes use of this. However, in Hero
Academy players take several actions before their turn ends. One possibility would be
to encode multiple actions as one multi-action, e.g. as an array of actions, and assign it
to one edge. Due to the number of possible permutations, this would raise the number
of child nodes for a given game state immensely. Therefore, we decided to model each
action as its own node, trading tree breadth for depth.

As the number of possible actions is variable, depending on the current game state,
determining the exact branching factor is hardly possible. To get an estimate, we manu-
ally counted the number of possible actions in a recorded game to be 60 on average. We
therefore estimate the average branching factor per turn to be 605 = 7.78× 108 as each
player has five actions. If we further assume through observation that the average game
length is 40 turns and both players take a turn each round, we can calculate the aver-
age game-tree complexity to ((605)2)40 = 1.82 × 10711. As a comparison: Shannon
calculated the game-tree complexity of Chess to be 10120 [19].



In the following, we will present three game-tree based methods, which were used
as a baseline for our online evolution method.

Greedy search among actions The Greedy Action method is the most basic method
developed. It makes a one-ply search among all possible actions, and selects the action
that leads to the most promising game state based on our heuristic. It also uses action
pruning described earlier. The Greedy Action search is invoked five times to complete
a turn.

Greedy search among turns Greedy Turn performs a five-ply depth-first search cor-
responding to a full turn. Both action pruning and action sorting are applied at each
node. The heuristic described earlier rates all states at leaf nodes and then chooses the
action sequence that leads to the highest-rated state. A transposition table is used so that
already visited game states will not be visited again. This method is very similar to a
Minimax search that is depth-limited to only search in the first five ply. Except for some
early and late game situations Greedy Turn is not able to make an exhaustive search of
the space of actions, even with a time budget of a minute.

Monte Carlo Tree Search Monte Carlo Tree Search has successfully been imple-
mented for games with large branching factors such as the strategy game Civilization
II [1] and it thus seems to be an important algorithm to test in Hero Academy. Like the
two greedy search variants, the Monte Carlo Tree Search algorithm was implemented
with an action based approach, i.e. one ply in the tree represents an action, not a turn.
Hence the search has to reach the depth of five to reach the beginning of the oppo-
nent’s turn. In each exploration phase, one child is added to the node chosen in the
selection phase, and a node will not be selected unless all of its siblings have been
added in previous iterations. Additionally, we had to modify the standard backpropa-
gation to handle two players with multiple actions. We solved this with an extension
of the BackupNegamax [2] algorithm (see Algorithm 1). This backpropagation algo-
rithm uses a list of edges corresponding to the traversal during the selection phase, a
∆ value corresponding to the result of the simulation phase and a boolean p1 that is
true if player one is the max player and false otherwise. The ε-greedy approach was
used in the rollouts that combine random play with the highest rated action (rated by
our actions sorting method). The MCTS agent was given a budget of b milliseconds. As
agents in Hero Academy have to select not one but five actions, we experimented with
two approaches: the first approach was to request one action from the agent five times
each with a time budget of b

5 . The second approach was to request five actions from the
agent with a time budget of b. The second approach proved to be superior as it gives the
search algorithms more flexibility.

2.5 Online Evolution

Evolutionary algorithms have been used in various ways to evolve controllers for many
games. This is done by what is called Offline Learning where a controller first goes



Algorithm 1 Alteration of the BackupNegamax [2] algorithm for multi-action games.
1: procedure MULTINEGAMAX(Edge[] T , Double ∆, Boolean p1)
2: for all Edge e in T do
3: e.visits++
4: if e.to 6= null then
5: e.to.visits ++

6: if e.from = root then
7: e.from.visits ++

8: if e.p1 = p1 then
9: e.value += ∆

10: else
11: e.value −= ∆

through a training phase in which it learns to play the game. In this section we will
present an evolutionary algorithm that, inspired by the rolling horizon evolution, evolves
strategies while it plays the game. We call this algorithm Online Evolution. The online
evolution was implemented to play Hero Academy and aims to evolve the best possible
action sequence each turn. Each individual in a population thus represent a sequence of
five actions. A brute force search, like the Greedy Turn search, is not able to explore
the entire space of action sequences within a reasonable time frame and may miss many
interesting choices. An evolutionary algorithm on the other hand can explore the search
space in a very different way and we will show that it works very well for this game.

An overview of the online evolution algorithm will now be given and is also pre-
sented in pseudocode (see Algorithm 2). The online evolution first creates a population
of random individuals. These are created by repeatedly selecting a random action in a
forward model of the game until no more action points are left. In our case we were
able to use the game implementation itself as a forward model.

In each generation all individuals are rated using a fitness function which is based
on the hand-written heuristic described in the previous section, where after the worst
individuals are removed from the population. The remaining individuals are then each
paired with another random individual to breed an offspring through uniform crossover.
An example of the crossover mechanism for two action sequences in Hero Academy
can be seen on Figure 2. The offspring will the represent an action sequence that is a
random combination of its two parents’. Crossover can however in its simplest form
easily produce illegal action sequences for Hero Academy. E.g. moving a unit from
a certain position obviously requires that there is a unit on that square, which might
not be true due to an earlier action in the sequence. Illegal action sequences could be
allowed but we believe the population would be swarmed with illegal sequences doing
so. Instead actions are only selected from a parent if it is legal and otherwise the action
will be selected from the other parent. If both actions are illegal it will try the same
approach on the next action in the parents sequences and if they are illegal as well a
completely random available action is finally selected.

Some offspring will also be mutated to introduce new actions in the gene pool.
Mutation simply changes one random action to another legal action. Legal en respect to
the previous actions only. In some cases this will still result in an illegal action sequence.



Algorithm 2 Online Evolution
(Procedures Procreate (Crossover and Mutation), Clone and Eval are omitted)
1: procedure ONLINEEVOLUTION(State s)
2: Genome[] pop = ∅ . Population
3: Init(pop, s)
4: while time left do
5: for each Genome g in pop do
6: clone = Clone(s)
7: clone.update(g.actions)
8: if g.visits = 0 then
9: g.value = Eval(clone)

10: g.visits++
11: pop.sort() . Descending order after value
12: pop = first half of pop . 50% Elitism
13: pop = Procreate(pop) . Mutation & Crossover
14: return pop[0].actions . Best action sequence
15:
16: procedure INIT(Genome[] pop, State s)
17: for x = 1 to POP SIZE do
18: State clone = clone(s)
19: Genome g = new Genome()
20: g.actions = RandomActions(clone)
21: g.visits = 0
22: pop.add(g)
23:
24: procedure RANDOMACTIONS(State s)
25: Action[] actions = ∅
26: Boolean p1 = s.p1 . Who’s turn is it?
27: while s is not terminal AND s.p1 = p1 do
28: Action a = random available action in s
29: s.update(a)
30: actions.push(a)
31: return actions

If this happens the following part of the sequence is changed to random but legal actions
as well.

Attempts were made to use rollouts as the heuristic for the online evolution to incor-
porate information about possible counter moves. In this variation the fitness function
is altered to perform one rollout with a depth limit of five actions i.e. one turn. The
goal of introducing rollouts is to rate an action sequence by the outcome of the best
possible counter-move. Individuals in the population that survive several generations
will also be tested several times and in this case only the lowest found value is used.
A good action sequence can thus survive many generations until a good counter-move
is found. To avoid that such a solution re-enters the population the worst known value
for each action sequence is stored in a table. Despite our efforts of using stochastic roll-



Fig. 2: An example of the uniform crossover used by the online evolution in Hero
Academy. Two parent solutions are shown in the top and the resulting solution after
crossover in the bottom. Each gene (action) are randomly picked from one of the par-
ents. Colours on genes represent the type of action they represent. Healing actions are
green, move actions are blue, attack actions are red and equip actions are yellow.

outs as a fitness function no significant improvement was observed compared to a static
evaluation. The experiments of this variation are thus not included in this paper.

3 Experiments and Results

In this sections we will describe our experiments and present the results of playing each
of the described methods against each other.

3.1 Experimental Setup

Experiments were made using the testbed described earlier. Each method was played
against each other method 100 times, 50 times as the the starting player and 50 times
as the second player. The map seen on Figure 1 was used and all methods played as the
Council team. The testbed was configured to be without randomness and hidden infor-
mation to focus further on the challenge of performing multiple actions. Each method
was not allowed to use more than one processor and had a time budget of six seconds
each turn. The winning percentages of each matchup will be presented where draws
counts as half a win for each player. The rules of Hero Academy does not include



Random Greedy Action Greedy Turn MCTS Online Evolution

Greedy Action 100% - 36% 51.5% 10%
Greedy Turn 100% 64.0% - 88.0% 19.5%
MCTS 100% 48.5% 22.0% - 2%
Online Evolution 100% 90.0% 80.5% 98% -

Table 2: Win percentages of the agents listed in the left-most column in 100 games
against agents listed in the top row. Any win percentage of 62% or more is calculated to
be significant with a significance level of 0.05 using the Wilcoxon Signed-Rank Test.

draws, but we enforced this when no winner was found in 100 rounds. The experiments
were carried out on a Intel Core i7-3517U CPU with 4 × 1.90GHz cores and 8 GB of
ram.

3.2 Configuration

The following configurations were used for our MCTS implementation. The traditional
UCT tree policy Xj + 2Cp

√
2 lnn
nj

was used with the exploration constant Cp = 1√
2

.
The default policy is ε-greedy, where ε=0.5. Rollouts were depth-limited to one turn,
using the heuristic state evaluator described above. Action pruning and sorting are used
as described above. A transposition table was used with the descent-path only back-
propagation strategy and thus values and visit counts are stored in edges. nj in the tree
policy is thus in fact extracted from the child edges instead of the nodes.

Our experiments clearly show that short rollouts are preferred over long rollouts
and that rollouts of just one turn gives the best results. Also by adding some domain
knowledge to the rollouts with the ε-greedy policy the performance is improved. ε-
greedy picks a greedy action equivalent to the highest rated action by the action sorting
method with a probability of ε and otherwise a random action is picked.

Online evolution used a population size of 100, survival rate 0.5, mutation proba-
bility 0.1 and uniform crossover. The heuristic state evaluator described earlier is also
used by the online evolution.

3.3 Performance Comparison

Our results, shown in Table 2, show a clear performance ordering between the methods.
Online evolution was the best performing method with a minimum winning percentage
of 80.5% against the best of the other methods. GreedyTurn performs second best. In
third place, MCTS plays on the same level as GreedyAction, which indicates that it is
able to identify the action that gives the best immediate reward while it is unable to
search sufficiently through the space of possible action sequences. All methods con-
vincingly beat random search.



3.4 Search Characteristic Comparison

To further understand how the methods explores the search space, let us investigate
some of the statistics gathered during the experiments, in particular the number of dif-
ferent action sequences each method is able to evaluate within the given time budget.
Since many action sequences produce the same outcome, we have recorded the number
of unique outcomes evaluated by each method. The GreedyTurn search was on average
able to evaluate 579,912 unique outcomes during a turn. Online Evolution evaluated on
average 9,344 unique outcomes, and MCTS only 201. Each node at the fifth ply of the
MCTS tree corresponds to one unique outcome and the search only manages to expand
the tree to a limited number of nodes at this depth. When looking into more statistics
from MCTS, we can see that the average depth of leaf nodes in the final trees is 4.86
plies, while the deepest leaf node of each tree reached an average depth of 6.38 plies.
This means that the search tree just barely enters the opponents’ turn even though it
manages to run an average of 258,488 iterations per turn. The Online Evolution ran an
average of 3,693 generations each turn but seems to get stuck at a local optima very
quickly as the number of unique outcomes evaluated is low. This suggests that it would
play almost equally good with a much lower time budget, but also that the algorithm
could be improved.

4 Discussion

The results strongly suggest that online evolution searches the space of plans more effi-
ciently than any of the other methods. This should perhaps not be too surprising, since
MCTS was never intended to deal with this type of problem, where the “turn-level
branching factor” is so high that it all possible turns cannot even be enumerated dur-
ing the time allocated. MCTS have also failed to work well in Arimaa which has only
four actions each turn [12]. In other words, the superior performance of evolutionary
computation on this problem might be due more to that very little research has been
done on problems of this type. Given the similarities of Hero Academy to other strat-
egy games, and to that these games model real-life strategic decision making, this is
somewhat surprising. More research is clearly needed.

One immediately promising avenue for further research is to try using evolutionary
algorithms with diversity maintenance methods (such as niching [14]), given that many
strategies in the method used here seems to have been explored multiple times. Tabu-
search could also be effective [8]. Exploration of a larger number of strategies is likely
to lead to better performance.

Finally, it would be very interesting to try and take the opponents’ move(s) into
account as well. Obviously, a full Minimax search will not be possible, given that the
first player’s turn cannot even be explored exhaustively, but it might still be possible to
explore this through competitive coevolution [18]. The idea here is that one population
contains the first player’s turn, and another population the second player’s turn; the fit-
ness of the second population’s individuals is the inverse of that of the first population’s
individuals. There is a major unsolved problem here in that the outcome of the first turn
decides the starting conditions for the second turn so that most individuals in the second



population would be incompatible with most individuals in the first population, but it
may be possible to define a repair function that addresses this.

5 Conclusion

This paper describes online evolution, a new method for playing adversarial games with
very large branching factors. This is common in strategy games, and presumably in
the real-world scenarios they model. The core idea is to use an evolutionary algorithm
to search for the next turn, where the turn is composed of a sequence of actions. We
compared this algorithm with several other algorithms on the game Hero Academy; the
comparison set includes a standard version of Monte Carlo Tree Search. MCTS is the
state of the art for many games with high branching factor. Our results show that online
evolution convincingly outperforms all other methods on this problem. Further analysis
shows that it does this despite considering fewer unique turns than the other algorithms.
It should be noted that other variants of the MCTS algorithm are likely to perform better
on problems of this type, just as other variants of Online Evolution might; we are not
claiming that evolution outperforms all types of tree search. Future work will go into
investigating how well this performance holds up in related games, and how to improve
the evolutionary search. We will also compare our approach with more sophisticated
versions of MCTS, as outlined in the introduction.

References

1. Branavan, S., Silver, D., Barzilay, R.: Non-linear monte-carlo search in civilization ii. AAAI
Press/International Joint Conferences on Artificial Intelligence (2011)

2. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S., et al.: A survey of monte carlo tree search
methods. Computational Intelligence and AI in Games, IEEE Transactions on 4(1), 1–43
(2012)

3. Cardamone, L., Loiacono, D., Lanzi, P.L.: Evolving competitive car controllers for racing
games with neuroevolution. In: Proceedings of the 11th Annual conference on Genetic and
evolutionary computation. pp. 1179–1186. ACM (2009)

4. Chaslot, G., Bakkes, S., Szita, I., Spronck, P.: Monte-carlo tree search: A new framework for
game ai. In: AIIDE (2008)

5. Churchill, D., Buro, M.: Portfolio greedy search and simulation for large-scale combat in
starcraft. In: Computational Intelligence in Games (CIG), 2013 IEEE Conference on. pp.
1–8. IEEE (2013)

6. Elias, G.S., Garfield, R., Gutschera, K.R.: Characteristics of games. MIT Press (2012)
7. Gelly, S., Wang, Y.: Exploration exploitation in go: Uct for monte-carlo go. In: NIPS: Neural

Information Processing Systems Conference On-line trading of Exploration and Exploitation
Workshop (2006)

8. Glover, F., Laguna, M.: Tabu Search*. Springer (2013)
9. Helmbold, D.P., Parker-Wood, A.: All-moves-as-first heuristics in monte-carlo go. In: IC-AI.

pp. 605–610 (2009)
10. Justesen, N.: Artificial Intelligence for Hero Academy. Master’s thesis, IT University of

Copenhagen (2015)



11. Justesen, N., Tillman, B., Togelius, J., Risi, S.: Script-and cluster-based uct for starcraft. In:
Computational Intelligence and Games (CIG), 2014 IEEE Conference on. pp. 1–8. IEEE
(2014)

12. Kozelek, T.: Methods of mcts and the game arimaa. Charles University, Prague, Faculty of
Mathematics and Physics (2009)

13. Levine, J., Congdon, C.B., Ebner, M., Kendall, G., Lucas, S.M., Miikkulainen, R., Schaul,
T., Thompson, T., Lucas, S.M., Mateas, M., et al.: General video game playing. Artificial
and Computational Intelligence in Games 6, 77–83 (2013)

14. Mahfoud, S.W.: Niching methods for genetic algorithms. Urbana 51(95001), 62–94 (1995)
15. Neumann, J.v.: Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100(1), 295–

320 (1928)
16. Perez, D., Rohlfshagen, P., Lucas, S.M.: Monte-carlo tree search for the physical travelling

salesman problem. In: Applications of Evolutionary Computation, pp. 255–264. Springer
(2012)

17. Perez, D., Samothrakis, S., Lucas, S., Rohlfshagen, P.: Rolling horizon evolution versus tree
search for navigation in single-player real-time games. In: Proceedings of the 15th annual
conference on Genetic and evolutionary computation. pp. 351–358. ACM (2013)

18. Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evolutionary Compu-
tation 5(1), 1–29 (1997)

19. Shannon, C.E.: Xxii. programming a computer for playing chess. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science 41(314), 256–275 (1950)

20. Togelius, J., Karakovskiy, S., Baumgarten, R.: The 2009 mario ai competition. In: Evolu-
tionary Computation (CEC), 2010 IEEE Congress on. pp. 1–8. IEEE (2010)

21. Togelius, J., Karakovskiy, S., Koutnı́k, J., Schmidhuber, J.: Super mario evolution. In: Com-
putational Intelligence and Games, 2009. CIG 2009. IEEE Symposium on. pp. 156–161.
IEEE (2009)

22. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolu-
tionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation
1(1), 32–49 (2011)


